Do you want to publish a course? Click here

Combinatorial aspects of selective star covering properties in $Psi$-spaces

153   0   0.0 ( 0 )
 Added by Boaz Tsaban
 Publication date 2014
  fields
and research's language is English
 Authors Boaz Tsaban




Ask ChatGPT about the research

Which Isbell--Mrowka spaces ($Psi$-spaces) satisfy the star version of Mengers and Hurewiczs covering properties? Following Bonanzinga and Matveev, this question is considered here from a combinatorial point of view. An example of a $Psi$-space that is (strongly) star-Menger but not star-Hurewicz is obtained. The PCF-theory function $kappamapstocof([kappa]^alephes)$ is a key tool. Using the method of forcing, a complete answer to a question of Bonanzinga and Matveev is provided. The results also apply to the mentioned covering properties in the realm of Pixley--Roy spaces, to the extent of spaces with these properties, and to the character of free abelian topological groups over hemicompact $k$ spaces.



rate research

Read More

We construct Menger subsets of the real line whose product is not Menger in the plane. In contrast to earlier constructions, our approach is purely combinatorial. The set theoretic hypothesis used in our construction is far milder than earlier ones, and holds in all but the most exotic models of real set theory. On the other hand, we establish productive properties f
W. Hurewicz proved that analytic Menger sets of reals are $sigma$-compact and that co-analytic completely Baire sets of reals are completely metrizable. It is natural to try to generalize these theorems to projective sets. This has previously been accomplished by $V = L$ for projective counterexamples, and the Axiom of Projective Determinacy for positive results. For the first problem, the first author, S. Todorcevic, and S. Tokgoz have produced a finer analysis with much weaker axioms. We produce a similar analysis for the second problem, showing the two problems are essentially equivalent. We also construct in ZFC a separable metrizable space with $omega$-th power completely Baire, yet lacking a dense completely metrizable subspace. This answers a question of Eagle and Tall in Abstract Model Theory.
Assume that X is a metrizable separable space, and each clopen-valued lower semicontinuous multivalued map Phi from X to Q has a continuous selection. Our main result is that in this case, X is a sigma-space. We also derive a partial converse implication, and present a reformulation of the Scheepers Conjecture in the language of continuous selections.
We establish that if it is consistent that there is a supercompact cardinal, then it is consistent that every locally compact, hereditarily normal space which does not include a perfect pre-image of omega_1 is hereditarily paracompact.
186 - Franklin D. Tall 2011
We examine locally compact normal spaces in models of form PFA(S)[S], in particular characterizing paracompact, countably tight ones as those which include no perfect pre-image of omega_1 and in which all separable closed subspaces are Lindelof.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا