Do you want to publish a course? Click here

Completely Baire spaces, Menger spaces, and projective sets

93   0   0.0 ( 0 )
 Added by Lyubomyr Zdomskyy
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

W. Hurewicz proved that analytic Menger sets of reals are $sigma$-compact and that co-analytic completely Baire sets of reals are completely metrizable. It is natural to try to generalize these theorems to projective sets. This has previously been accomplished by $V = L$ for projective counterexamples, and the Axiom of Projective Determinacy for positive results. For the first problem, the first author, S. Todorcevic, and S. Tokgoz have produced a finer analysis with much weaker axioms. We produce a similar analysis for the second problem, showing the two problems are essentially equivalent. We also construct in ZFC a separable metrizable space with $omega$-th power completely Baire, yet lacking a dense completely metrizable subspace. This answers a question of Eagle and Tall in Abstract Model Theory.



rate research

Read More

We construct Menger subsets of the real line whose product is not Menger in the plane. In contrast to earlier constructions, our approach is purely combinatorial. The set theoretic hypothesis used in our construction is far milder than earlier ones, and holds in all but the most exotic models of real set theory. On the other hand, we establish productive properties f
We construct, using mild combinatorial hypotheses, a real Menger set that is not Scheepers, and two real sets that are Menger in all finite powers, with a non-Menger product. By a forcing-theoretic argument, we show that the same holds in the Blass--Shelah model for arbitrary values of the ultrafilter and dominating number.
We study products of general topological spaces with Mengers covering property, and its refinements based on filters and semifilters. To this end, we extend the projection method from the classic real line topology to the Michael topology. Among other results, we prove that, assuming CH{}, every productively Lindelof space is productively Menger, and every productively Menger space is productively Hurewicz. None of these implications is reversible.
Assume that X is a metrizable separable space, and each clopen-valued lower semicontinuous multivalued map Phi from X to Q has a continuous selection. Our main result is that in this case, X is a sigma-space. We also derive a partial converse implication, and present a reformulation of the Scheepers Conjecture in the language of continuous selections.
186 - Franklin D. Tall 2011
We examine locally compact normal spaces in models of form PFA(S)[S], in particular characterizing paracompact, countably tight ones as those which include no perfect pre-image of omega_1 and in which all separable closed subspaces are Lindelof.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا