Do you want to publish a course? Click here

Using sociometers to quantify social interaction patterns

296   0   0.0 ( 0 )
 Added by Jukka-Pekka Onnela
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Research on human social interactions has traditionally relied on self-reports. Despite their widespread use, self-reported accounts of behaviour are prone to biases and necessarily reduce the range of behaviours, and the number of subjects, that may be studied simultaneously. The development of ever smaller sensors makes it possible to study group-level human behaviour in naturalistic settings outside research laboratories. We used such sensors, sociometers, to examine gender, talkativeness and interaction style in two different contexts. Here, we find that in the collaborative context, women were much more likely to be physically proximate to other women and were also significantly more talkative than men, especially in small groups. In contrast, there were no gender-based differences in the non-collaborative setting. Our results highlight the importance of objective measurement in the study of human behaviour, here enabling us to discern context specific, gender-based differences in interaction style.



rate research

Read More

Individual happiness is a fundamental societal metric. Normally measured through self-report, happiness has often been indirectly characterized and overshadowed by more readily quantifiable economic indicators such as gross domestic product. Here, we examine expressions made on the online, global microblog and social networking service Twitter, uncovering and explaining temporal variations in happiness and information levels over timescales ranging from hours to years. Our data set comprises over 46 billion words contained in nearly 4.6 billion expressions posted over a 33 month span by over 63 million unique users. In measuring happiness, we use a real-time, remote-sensing, non-invasive, text-based approach---a kind of hedonometer. In building our metric, made available with this paper, we conducted a survey to obtain happiness evaluations of over 10,000 individual words, representing a tenfold size improvement over similar existing word sets. Rather than being ad hoc, our word list is chosen solely by frequency of usage and we show how a highly robust metric can be constructed and defended.
Recently, information transmission models motivated by the classical epidemic propagation, have been applied to a wide-range of social systems, generally assume that information mainly transmits among individuals via peer-to-peer interactions on social networks. In this paper, we consider one more approach for users to get information: the out-of-social-network influence. Empirical analyses of eight typical events diffusion on a very large micro-blogging system, emph{Sina Weibo}, show that the external influence has significant impact on information spreading along with social activities. In addition, we propose a theoretical model to interpret the spreading process via both internal and external channels, considering three essential properties: (i) memory effect; (ii) role of spreaders; and (iii) non-redundancy of contacts. Experimental and mathematical results indicate that the information indeed spreads much quicker and broader with mutual effects of the internal and external influences. More importantly, the present model reveals that the event characteristic would highly determine the essential spreading patterns once the network structure is established. The results may shed some light on the in-depth understanding of the underlying dynamics of information transmission on real social networks.
Measuring close proximity interactions between individuals can provide key information on social contacts in human communities. With the present study, we report the quantitative assessment of contact patterns in a village in rural Malawi, based on proximity sensors technology that allows for high-resolution measurements of social contacts. The system provided information on community structure of the village, on social relationships and social assortment between individuals, and on daily contacts activity within the village. Our findings revealed that the social network presented communities that were highly correlated with household membership, thus confirming the importance of family ties within the village. Contacts within households occur mainly between adults and children, and adults and adolescents. This result suggests that the principal role of adults within the family is the care for the youngest. Most of the inter-household interactions occurred among caregivers and among adolescents. We studied the tendency of participants to interact with individuals with whom they shared similar attributes (i.e., assortativity). Age and gender assortativity were observed in inter-household network, showing that individuals not belonging to the same family group prefer to interact with people with whom they share similar age and gender. Age disassortativity is observed in intra-household networks. Family members congregate in the early morning, during lunch time and dinner time. In contrast, individuals not belonging to the same household displayed a growing contact activity from the morning, reaching a maximum in the afternoon. The data collection infrastructure used in this study seems to be very effective to capture the dynamics of contacts by collecting high resolution temporal data and to give access to the level of information needed to understand the social context of the village.
With the availability of cell phones, internet, social media etc. the interconnectedness of people within most societies has increased drastically over the past three decades. Across the same timespan, we are observing the phenomenon of increasing levels of fragmentation in society into relatively small and isolated groups that have been termed filter bubbles, or echo chambers. These pose a number of threats to open societies, in particular, a radicalisation in political, social or cultural issues, and a limited access to facts. In this paper we show that these two phenomena might be tightly related. We study a simple stochastic co-evolutionary model of a society of interacting people. People are not only able to update their opinions within their social context, but can also update their social links from collaborative to hostile, and vice versa. The latter is implemented such that social balance is realised. We find that there exists a critical level of interconnectedness, above which society fragments into small sub-communities that are positively linked within and hostile towards other groups. We argue that the existence of a critical communication density is a universal phenomenon in all societies that exhibit social balance. The necessity arises from the underlying mathematical structure of a phase transition phenomenon that is known from the theory of a kind of disordered magnets called spin glasses. We discuss the consequences of this phase transition for social fragmentation in society.
Advancing our understanding of human behavior hinges on the ability of theories to unveil the mechanisms underlying such behaviors. Measuring the ability of theories and models to predict unobserved behaviors provides a principled method to evaluate their merit and, thus, to help establish which mechanisms are most plausible. Here, we propose models and develop rigorous inference approaches to predict strategic decisions in dyadic social dilemmas. In particular, we use bipartite stochastic block models that incorporate information about the dilemmas faced by individuals. We show, combining these models with empirical data on strategic decisions in dyadic social dilemmas, that individual strategic decisions are to a large extent predictable, despite not being rational. The analysis of these models also allows us to conclude that: (i) individuals do not perceive games according their game-theoretical structure; (ii) individuals make decisions using combinations of multiple simple strategies, which our approach reveals naturally.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا