Do you want to publish a course? Click here

Thermodynamic consistency, quark mass scaling, and properties of strange matter

133   0   0.0 ( 0 )
 Added by G. X. Peng
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The previous thermodynamic treatment for models with density and/or temperature dependent quark masses is shown to be inconsistent with the requirement of fundamental thermodynamics. We therefore study a fully self-consistent one according to the fundamental differential equation of thermodynamics. After obtaining a new quark mass scaling with the inclusion of both confinement and leading-order perturbative interactions, we investigate properties of strange quark matter in the fully consistent thermodynamic treatment. It is found that the equation of state become stiffer, and accordingly, the maximum mass of strange stars is as large as about 2 times the solar mass, if strange quark matter is absolutely or metastable.



rate research

Read More

The previous treatments for strange quark matter in the quark mass-density-dependent model have unreasonable vacuum limits. We provide a method to obtain the quark mass parametrizations and give a self-consistent thermodynamic treatment which includes the MIT bag model as an extreme. In this treatment, strange quark matter in bulk still has the possibility of absolute stability. However, the lower density behavior of the sound velocity is opposite to previous findings.
86 - Fei Sun , Anping Huang 2021
We investigate the rotating quark matter in the three-flavor Nambu and Jona-Lasinio (NJL) model. The chiral condensation, spin polarization and number susceptibility of strange quark are carefully studied at finite temperature without or with finite chemical potential in this model. We find that the rotation suppresses the chiral condensation and enhances the first-order quark spin polarization, however for the second-order quark spin polarization and quark number susceptibility the effect is very interesting, in the case of zero chemical potential which have a jump structure when the first-order phase transitions take place. When extending to the situation with finite chemical potential, we find the angular velocity also plays a crucial role, at small or large enough angular velocity the chemical potential enhances the susceptibility, however in the middle region of angular velocity the effect of the chemical potential is suppressed by the angular velocity and susceptibility can be changed considerably, which can be also observed that the quark number susceptibility has two maximum value. Furthermore, it is found that at sufficiently large angular velocity the contributions played by light quark and strange quark to these phenomena are almost equal. We expect these studies to be used to understand the chiral symmetry breaking and restoration as well as probe the QCD phase transition.
99 - Kausik Pal 2014
We calculate the free energy, entropy and pressure of the Quark Gluon Plasma (QGP) at finite temperature and density with a given fraction of spin-up and spin-down quarks using a MIT bag model with corrections up to ${cal O} (g^4 ln g^2)$. The expressions for the specific heat and the spin susceptibility are derived in terms of Fermi momentum and temperature. The effects of interaction between the quarks on the properties of the QGP phase are also investigated. Within our phenomenological model, we estimate the transition temperature $T_c$ by constructing the phase boundary between the hadronic phase and the QGP phase. Finally, we compute the equation of state of the QGP and its dependence on the temperature and the density.
154 - I. Sagert , T. Fischer , M.Hempel 2010
Explosive astrophysical systems, such as supernovae or compact star binary mergers, provide conditions where strange quark matter can appear. The high degree of isospin asymmetry and temperatures of several MeV in such systems may cause a transition to the quark phase already around saturation density. Observable signals from the appearance of quark matter can be predicted and studied in astrophysical simulations. As input in such simulations, an equation of state with an integrated quark matter phase transition for a large temperature, density and proton fraction range is required. Additionally, restrictions from heavy ion data and pulsar observation must be considered. In this work we present such an approach. We implement a quark matter phase transition in a hadronic equation of state widely used for astrophysical simulations and discuss its compatibility with heavy ion collisions and pulsar data. Furthermore, we review the recently studied implications of the QCD phase transition during the early post-bounce evolution of core-collapse supernovae and introduce the effects from strong interactions to increase the maximum mass of hybrid stars. In the MIT bag model, together with the strange quark mass and the bag constant, the strong coupling constant $alpha_s$ provides a parameter to set the beginning and extension of the quark phase and with this the mass and radius of hybrid stars.
132 - K. Tsushima 2018
In-medium properties of the low-lying strange, charm, and bottom baryons in symmetric nuclear matter are studied in the quark-meson coupling (QMC) model. Results for the Lorentz-scalar effective masses, mean field potentials felt by the light quarks in the baryons, in-medium bag radii, and the lowest mode bag eigenvalues are presented for those calculated using the updated data. This study completes the in-medium properties of the low-lying baryons in symmetric nuclear matter in the QMC model, for the strange, charm and bottom baryons which contain one or two strange, one charm or one bottom quarks, as well as at least one light quark. Highlight is the prediction of the bottom baryon Lorentz-scalar effective masses, namely, the Lorentz-scalar effective mass of $Sigma_b$ becomes smaller than that of $Xi_b$ at moderate nuclear matter density, $m^*_{Sigma_b} < m^*_{Xi_b}$, although in vacuum $m_{Sigma_b} > m_{Xi_b}$. We study further the effects of the repulsive Lorentz-vector potentials on the excitation (total) energies of these bottom baryons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا