Do you want to publish a course? Click here

Thermodynamics of a bouncer model: a simplified one-dimensional gas

129   0   0.0 ( 0 )
 Added by Edson Denis Leonel
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Some dynamical properties of non interacting particles in a bouncer model are described. They move under gravity experiencing collisions with a moving platform. The evolution to steady state is described in two cases for dissipative dynamics with inelastic collisions: (i) for large initial energy; (ii) for low initial energy. For (i) we prove an exponential decay while for (ii) a power law marked by a changeover to the steady state is observed. A relation for collisions and time is obtained and allows us to write relevant observables as temperature and entropy as function of either number of collisions and time.



rate research

Read More

The understanding of the fundamental properties of the climate system has long benefitted from the use of simple numerical models able to parsimoniously represent the essential ingredients of its processes. Here we introduce a new model for the atmosphere that is constructed by supplementing the now-classic Lorenz 96 one-dimensional lattice model with temperature-like variables. The model features an energy cycle that allows for conversion between the kinetic and potential forms and for introducing a notion of efficiency. The models evolution is controlled by two contributions - a quasi-symplectic and a gradient one, which resemble (yet not conforming to) a metriplectic structure. After investigating the linear stability of the symmetric fixed point, we perform a systematic parametric investigation that allows us to define regions in the parameters space where at steady state stationary, quasi-periodic, and chaotic motions are realised, and study how the terms responsible for defining the energy budget of the system depend on the external forcing injecting energy in the kinetic and in the potential energy reservoirs. Finally, we find preliminary evidence that the model features extensive chaos. We also introduce a more complex version of the model that is able to accommodate for multiscale dynamics and that features an energy cycle that more closely mimics the one of the Earths atmosphere.
For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the presence of the external potential, the inevitable diffusive rearrangements between the quasiparticles, quantified by the diffusion constants of the gas, eventually lead the system to thermalise at late times. We show that the full thermalising dynamics can be described by the generalised hydrodynamics with diffusion and force terms, and we compare these predictions with numerical simulations. Finally, we provide an explanation for the slow thermalisation rates observed in numerical and experimental settings: the hydrodynamics of integrable models is characterised by a continuity of modes, which can have arbitrarily small diffusion coefficients. As a consequence, the approach to thermalisation can display pre-thermal plateau and relaxation dynamics with long polynomial finite-time corrections.
Quantum impurity models play an important role in many areas of physics from condensed matter to AMO and quantum information. They are important models for many physical systems but also provide key insights to understanding much more complicated scenarios. In this paper we introduce a simplified method to describe the thermodynamic properties of integrable quantum impurity models. We show this method explicitly using the anisotropic Kondo and the interacting resonant level models. We derive a simplified expression for the free energy of both models in terms of a single physically transparent integral equation which is valid at all temperatures and values of the coupling constants.
233 - M. Menard , C. Bourbonnais 2010
The phase diagram of the one-dimensional extended Hubbard model at half-filling is investigated by a weak coupling renormalization group method applicable beyond the usual continuum limit for the electron spectrum and coupling constants. We analyze the influence of irrelevant momentum dependent interactions on asymptotic properties of the correlation functions and the nature of dominant phases for the lattice model under study.
66 - Joerg Schmiedmayer 2018
In this chapter we will present the one-dimensional (1d) quantum degenerate Bose gas (1d superfluid) as a testbed to experimentally illustrate some of the key aspects of quantum thermodynamics. Hard-core bosons in one-dimension are described by the integrable Lieb-Lininger model. Realistic systems, as they can be implemented, are only approximately integrable, and let us investigate the cross over to thermalisation. They show such fundamental properties as pre-thermalisation, general Gibbs ensembles and light-cone like spreading of de-coherence. On the other hand they are complex enough to illustrate that our limited ability to measure only (local) few-body observables determines the relevant description of the many-body system and its physics. One consequence is the observation of quantum recurrences in systems with thousand of interacting particles. The relaxation observed in 1D superfluids is universal for a large class of many-body systems, those where the relevant physics can be described by a set of long lived collective modes. The time window where the close to integrable dynamics can be observed is given by the lifetime of the quasi-particles associated with the collective modes. Based on these observations one can view (in a quantum field theory sense) a many-body quantum system at T=0 as vacuum and its excitations as the system to experiment with. This viewpoint leads to a new way to build thermal machines from the quasi-particles in 1D superfluids. We will give examples of how to realise these systems and point to a few interesting questions that might be addressed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا