Do you want to publish a course? Click here

Mechanics and Thermodynamics of a New Minimal Model of the Atmosphere

129   0   0.0 ( 0 )
 Added by Valerio Lucarini
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The understanding of the fundamental properties of the climate system has long benefitted from the use of simple numerical models able to parsimoniously represent the essential ingredients of its processes. Here we introduce a new model for the atmosphere that is constructed by supplementing the now-classic Lorenz 96 one-dimensional lattice model with temperature-like variables. The model features an energy cycle that allows for conversion between the kinetic and potential forms and for introducing a notion of efficiency. The models evolution is controlled by two contributions - a quasi-symplectic and a gradient one, which resemble (yet not conforming to) a metriplectic structure. After investigating the linear stability of the symmetric fixed point, we perform a systematic parametric investigation that allows us to define regions in the parameters space where at steady state stationary, quasi-periodic, and chaotic motions are realised, and study how the terms responsible for defining the energy budget of the system depend on the external forcing injecting energy in the kinetic and in the potential energy reservoirs. Finally, we find preliminary evidence that the model features extensive chaos. We also introduce a more complex version of the model that is able to accommodate for multiscale dynamics and that features an energy cycle that more closely mimics the one of the Earths atmosphere.



rate research

Read More

Some dynamical properties of non interacting particles in a bouncer model are described. They move under gravity experiencing collisions with a moving platform. The evolution to steady state is described in two cases for dissipative dynamics with inelastic collisions: (i) for large initial energy; (ii) for low initial energy. For (i) we prove an exponential decay while for (ii) a power law marked by a changeover to the steady state is observed. A relation for collisions and time is obtained and allows us to write relevant observables as temperature and entropy as function of either number of collisions and time.
The problem of inverse statistics (statistics of distances for which the signal fluctuations are larger than a certain threshold) in differentiable signals with power law spectrum, $E(k) sim k^{-alpha}$, $3 le alpha < 5$, is discussed. We show that for these signals, with random phases, exit-distance moments follow a bi-fractal distribution. We also investigate two dimensional turbulent flows in the direct cascade regime, which display a more complex behavior. We give numerical evidences that the inverse statistics of 2d turbulent flows is described by a multi-fractal probability distribution, i.e. the statistics of laminar events is not simply captured by the exponent $alpha$ characterizing the spectrum.
In this paper, we study the thermodynamics of quantum harmonic oscillator in the Tsallis framework and in the presence of a minimal length uncertainty. The existence of the minimal length is motivated by various theories such as string theory, loop quantum gravity, and black-hole physics. We analytically obtain the partition function, probability function, internal energy, and the specific heat capacity of the vibrational quantum system for $1<q<frac{3}{2}$ and compare the results with those of Tsallis and Boltzmann-Gibbs statistics without the minimal length scale.
We suggest a way of rationalizing an intra-seasonal oscillations (IOs) of the Earth atmospheric flow as four meteorological relevant triads of interacting planetary waves, isolated from the system of all the rest planetary waves. Our model is independent of the topography (mountains, etc.) and gives a natural explanation of IOs both in the North and South Hemispheres. Spherical planetary waves are an example of a wave mesoscopic system obeying discrete resonances that also appears in other areas of physics.
Unstable periodic orbits (UPOs) are a valuable tool for studying chaotic dynamical systems. They allow one to extract information from a system and to distill its dynamical structure. We consider here the Lorenz 1963 model with the classic parameters value and decompose its dynamics in terms of UPOs. We investigate how a chaotic orbit can be approximated in terms of UPOs. At each instant, we rank the UPOs according to their proximity to the position of the orbit in the phase space. We study this process from two different perspectives. First, we find that, somewhat unexpectedly, longer period UPOs overwhelmingly provide the best local approximation to the trajectory, even if our UPO-detecting algorithm severely undersamples them. Second, we construct a finite-state Markov chain by studying the scattering of the forward trajectory between the neighbourhood of the various UPOs. Each UPO and its neighbourhood are taken as a possible state of the system. We then study the transitions between the different states. Through the analysis of the subdominant eigenvectors of the corresponding stochastic matrix we provide a novel interpretation of the mixing processes occurring in the system by taking advantage of the concept of quasi-invariant sets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا