Do you want to publish a course? Click here

Simplified Thermodynamics for Quantum Impurity Models

144   0   0.0 ( 0 )
 Added by Colin Rylands
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum impurity models play an important role in many areas of physics from condensed matter to AMO and quantum information. They are important models for many physical systems but also provide key insights to understanding much more complicated scenarios. In this paper we introduce a simplified method to describe the thermodynamic properties of integrable quantum impurity models. We show this method explicitly using the anisotropic Kondo and the interacting resonant level models. We derive a simplified expression for the free energy of both models in terms of a single physically transparent integral equation which is valid at all temperatures and values of the coupling constants.



rate research

Read More

Quantum embedding theories provide a feasible route for obtaining quantitative descriptions of correlated materials. However, a critical challenge is solving an effective impurity model of correlated orbitals embedded in an electron bath. Many advanced impurity solvers require the approximation of a bath continuum using a finite number of bath levels, producing a highly nonconvex, ill-conditioned inverse problem. To address this drawback, this study proposes an efficient fitting algorithm for matrix-valued hybridization functions based on a data-science approach, sparse modeling, and a compact representation of Matsubara Greens functions. The efficiency of the proposed method is demonstrated by fitting random hybridization functions with large off-diagonal elements as well as those of a 20-orbital impurity model for a high-Tc compound, LaAsFeO, at low temperatures (T). The results set quantitative goals for the future development of impurity solvers toward quantum embedding simulations of complex correlated materials.
We present a very efficient solver for the general Anderson impurity problem. It is based on the perturbation around a solution obtained from exact diagonalization using a small number of bath sites. We formulate a perturbation theory which is valid for both weak and strong coupling and interpolates between these limits. Good agreement with numerically exact quantum Monte-Carlo results is found for a single bath site over a wide range of parameters. In particular, the Kondo resonance in the intermediate coupling regime is well reproduced for a single bath site and the lowest order correction. The method is particularly suited for low temperatures and alleviates analytical continuation of imaginary time data due to the absence of statistical noise compared to quantum Monte-Carlo impurity solvers.
In this work, we put forward the theoretical foundation toward thermodynamics of quantum impurity systems measurable in experiments. The theoretical developments involve the identifications on two types of thermodynamic entanglement free--energy spectral functions for impurity systems that can be either fermionic or bosonic or combined. Consider further the thermodynamic limit in which the hybrid environments satisfy the Gaussian--Wicks theorem. We then relate the thermodynamic spectral functions to the local quantum impurity systems spectral densities that are often experimentally measurable. Another type of inputs is the bare--bath coupling spectral densities, which could be accurately determined with various methods. Similar relation is also established for the nonentanglement component that exists only in anharmonic bosonic impurity systems. For illustration, we consider the simplest noninteracting systems, with focus on the strikingly different characteristics between the bosonic and fermionic scenarios.
The negative sign problem in quantum Monte Carlo (QMC) simulations of cluster impurity problems is the major bottleneck in cluster dynamical mean field calculations. In this paper we systematically investigate the dependence of the sign problem on the single-particle basis. We explore both the hybridization-expansion and the interaction-expansion variants of continuous-time QMC for three-site and four-site impurity models with baths that are diagonal in the orbital degrees of freedom. We find that the sign problem in these models can be substantially reduced by using a non-trivial single-particle basis. Such bases can be generated by diagonalizing a subset of the intracluster hoppings.
We present a continuous-time Monte Carlo method for quantum impurity models, which combines a weak-coupling expansion with an auxiliary-field decomposition. The method is considerably more efficient than Hirsch-Fye and free of time discretization errors, and is particularly useful as impurity solver in large cluster dynamical mean field theory (DMFT) calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا