We show that Abelian Higgs Models with dielectric function defined on the noncommutative plane enjoy self-dual vorticial solutions. By choosing a particular form of the dielectric function, we provide a family of solutions whose Higgs and magnetic fields interpolate between the profiles of the noncommutative Nielsen-Olesen and Chern-Simons vortices. This is done both for the usual $U(1)$ model and for the $SU(2)times U(1)$ semilocal model with a doublet of complex scalar fields. The variety of known noncommutative self-dual vortices which display a regular behaviour when the noncommutativity parameter tends to zero results in this way considerably enlarged.
We study the properties of a single magnetic vortex and magnetic vortex lattices in a generalization of the Abelian Higgs model containing the simplest derivative interaction that preserves the $U(1)$ gauge symmetry of the original model. The paper is motivated by the study of finite isospin chiral perturbation theory in a uniform, external : since pions are Goldstone bosons of QCD (due to chiral symmetry breaking by the QCD vacuum), they interact through momentum dependent terms. We introduce a uniform external magnetic field and find the asymptotic properties of single vortex solutions and compare them to the well-known solutions of the standard Abelian Higgs Model. Furthermore, we study the vortex lattice solutions near the upper critical field using the method of successive approximations, which was originally used by Abrikosov in his seminal paper on type-II superconductors. We find the vortex lattice structure, which remains hexagonal as in the standard Abelian Higgs model, and condensation energy of the vortex lattices relative to the normal vacuum (in a uniform magnetic field).
Starting from a self-dual formulation of gravity, we obtain a noncommutative theory of pure Einstein theory in four dimensions. In order to do that, we use Seiberg-Witten map. It is shown that the noncommutative torsion constraint is solved by the vanishing of commutative torsion. Finally, the noncommutative corrections to the action are computed up to second order.
A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the $theta$-expansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in $theta$ for the Plebanski action is explicitly obtained.
The influence of higher dimensions in noncommutative field theories is considered. For this purpose, we analyze the bosonic sector of a recently proposed 6 dimensional SU(3) orbifold model for the electroweak interactions. The corresponding noncommutative theory is constructed by means of the Seiberg-Witten map in 6D. We find in the reduced bosonic interactions in 4D theory, couplings which are new with respect to other known 4D noncommutative formulations of the Standard Model using the Seiberg-Witten map. Phenomenological implications due to the noncommutativity of extra dimensions are explored. In particular, assuming that the commutative model leads to the standard model values, a bound -5.63 10^{-8} GeV^{-2}< theta <1.06 10^{-7}GeV^{-2} on the corresponding noncommutativity scale is derived from current experimental constraints on the S and T oblique parameters. This bound is used to predict a possibly significant impact of noncommutativity effects of extra dimensions on the rare Higgs boson decay H-> gamma gamma.
We discuss dual formulations of vortex strings (magnetic flux tubes) in the four-dimensional ${cal N} =1$ supersymmetric Abelian Higgs model with the Fayet--Iliopoulos term in the superspace formalism. The Lagrangian of the model is dualized into a Lagrangian of the $BF$-type described by a chiral spinor gauge superfield including a 2-form gauge field. The dual Lagrangian is further dualized into a Lagrangian given by a chiral spinor superfield including a massive 2-form field. In both of the dual formulations, we obtain a superfield into which the vortex strings and their superpartners are embedded. We show the dual Lagrangians in terms of a superspace and a component formalism. In these dual Lagrangians, we explicitly show that the vortex strings of the original model are described by a string current electrically coupled with the 2-form gauge field or the massive 2-form field.
W. Garcia Fuertes
,J. Mateos Guilarte
.
(2014)
.
"Self-Dual Vortices in Abelian Higgs Models with Dielectric Function on the Noncommutative Plane"
.
Wifredo Garcia Fuertes
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا