Do you want to publish a course? Click here

Noncommutative Self-dual Gravity

82   0   0.0 ( 0 )
 Added by Hugo Compean
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

Starting from a self-dual formulation of gravity, we obtain a noncommutative theory of pure Einstein theory in four dimensions. In order to do that, we use Seiberg-Witten map. It is shown that the noncommutative torsion constraint is solved by the vanishing of commutative torsion. Finally, the noncommutative corrections to the action are computed up to second order.



rate research

Read More

A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the $theta$-expansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in $theta$ for the Plebanski action is explicitly obtained.
We construct a new covariant action for flat self-dual gravity in four spacetime dimensions. The action has just one term, but when expanded around an appropriate background gives rise to a kinetic term and a cubic interaction. Upon imposing the light-cone gauge, the action reproduces the expected chiral interaction of Siegel. The new action is in many ways analogous to the known covariant action for self-dual Yang-Mills theory. There is also a sense in which the new self-dual gravity action exhibits the double copy of self-dual Yang-Mills structure.
We formulate a noncommutative description of topological half-flat gravity in four dimensions. BRST symmetry of this topological gravity is deformed through a twisting of the usual BRST quantization of noncommutative gauge theories. Finally it is argued that resulting moduli space of instantons is characterized by the solutions of a noncommutative version of the Plebanskis heavenly equation.
We show that Abelian Higgs Models with dielectric function defined on the noncommutative plane enjoy self-dual vorticial solutions. By choosing a particular form of the dielectric function, we provide a family of solutions whose Higgs and magnetic fields interpolate between the profiles of the noncommutative Nielsen-Olesen and Chern-Simons vortices. This is done both for the usual $U(1)$ model and for the $SU(2)times U(1)$ semilocal model with a doublet of complex scalar fields. The variety of known noncommutative self-dual vortices which display a regular behaviour when the noncommutativity parameter tends to zero results in this way considerably enlarged.
We study non-Einstein Bach-flat gravitational instanton solutions that can be regarded as the generalization of the Taub-NUT/Bolt and Eguchi-Hanson solutions of Einstein gravity to conformal gravity. These solutions include non-Einstein spaces which are either asymptotically locally flat spacetimes (ALF) or asymptotically locally Anti-de Sitter (AlAdS). Nevertheless, solutions with different asymptotic conditions exist: we find geometries that present a weakened AlAdS asymptotia, exhibiting the typical low decaying mode of conformal gravity. This permits to identify the simple Neumann boundary condition that, as it happens in the asymptotically AdS sector, selects the Einstein solution out of the solutions of conformal gravity. All the geometries present non-vanishing Hirzebruch signature and Euler characteristic, being single-centered instantons. We compute the topological charges as well as the Noether charges of the Taub-NUT/Bolt and Eguchi-Hanson spacetimes, which happen to be finite. This enables us to study the thermodynamic properties of these geometries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا