No Arabic abstract
Charge-density-wave (CDW) correlations within the quintessential CuO$_2$ planes have been argued to either cause [1] or compete with [2] the superconductivity in the cuprates, and they might furthermore drive the Fermi-surface reconstruction in high magnetic fields implied by quantum oscillation (QO) experiments for YBa$_2$Cu$_3$O$_{6+{delta}}$ (YBCO) [3] and HgBa$_2$CuO$_{4+{delta}}$ (Hg1201) [4]. Consequently, the observation of bulk CDW order in YBCO was a significant development [5,6,7]. Hg1201 features particularly high structural symmetry and recently has been demonstrated to exhibit Fermi-liquid charge transport in the relevant temperature-doping range of the phase diagram, whereas for YBCO and other cuprates this underlying property of the CuO$_2$ planes is partially or fully masked [8-10]. It therefore is imperative to establish if the pristine transport behavior of Hg1201 is compatible with CDW order. Here we investigate Hg1201 ($T_c$ = 72 K) via bulk Cu L-edge resonant X-ray scattering. We indeed observe CDW correlations in the absence of a magnetic field, although the correlations and competition with superconductivity are weaker than in YBCO. Interestingly, at the measured hole-doping level, both the short-range CDW and Fermi-liquid transport appear below the same temperature of about 200 K. Our result points to a unifying picture in which the CDW formation is preceded at the higher pseudogap temperature by $q$ = 0 magnetic order [11,12] and the build-up of significant dynamic antiferromagnetic correlations [13]. Furthermore, the smaller CDW modulation wave vector observed for Hg1201 is consistent with the larger electron pocket implied by both QO [4] and Hall-effect [14] measurements, which suggests that CDW correlations are indeed responsible for the low-temperature QO phenomenon.
One of the central issues in the recent study of cuprate superconductors is the interplay of charge order with superconductivity. Here the interplay of charge order with superconductivity in cuprate superconductors is studied based on the kinetic-energy-driven superconducting (SC) mechanism by taking into account the intertwining between the pseudogap and SC gap. It is shown that the appearance of the Fermi pockets is closely associated with the emergence of the pseudogap. However, the distribution of the spectral weight of the SC-state quasiparticle spectrum on the Fermi arc, or equivalently the front side of the Fermi pocket, and back side of Fermi pocket is extremely anisotropic, where the most part of the spectral weight is located around the tips of the Fermi arcs, which in this case coincide with the hot spots on the electron Fermi surface (EFS). In particular, as charge order in the normal-state, this EFS instability drives charge order in the SC-state, with the charge-order wave vector that is well consistent with the wave vector connecting the hot spots on the straight Fermi arcs. Furthermore, this charge-order state is doping dependent, with the charge-order wave vector that decreases in magnitude with the increase of doping. Although there is a coexistence of charge order and superconductivity, this charge order antagonizes superconductivity. The results from the SC-state dynamical charge structure factor indicate the existence of a quantitative connection between the low-energy electronic structure and collective response of the electron density. The theory also shows that the pseudogap and charge order have a root in common, they and superconductivity are a natural consequence of the strong electron correlation.
The presence of different electronic orders other than superconductivity populating the phase diagram of cuprates suggests that they might be the key to disclose the mysteries of this class of materials. In particular charge order in the form of charge density waves (CDW), i.e., the incommensurate modulation of electron density in the CuO$_2$ planes, is ubiquitous across different families and presents a clear interplay with superconductivity. Until recently, CDW had been found to be confined inside a rather small region of the phase diagram, below the pseudogap temperature and the optimal doping. This occurrence might shed doubts on the possibility that such low temperature phenomenon actually rules the properties of cuprates either in the normal or in the superconducting states. However, recent resonant X-ray scattering (RXS) experiments are overturning this paradigm. It results that very short-ranged charge modulations permeate a much wider region of the phase diagram, coexisting with CDW at lower temperatures and persisting up to temperatures well above the pseudogap opening. Here we review the characteristics of these high temperature charge modulations, which are present in several cuprate families, with similarities and differences. A particular emphasis is put on their dynamical character and on their coupling to lattice and magnetic excitations, properties that can be determined with high resolution resonant inelastic x-ray scattering (RIXS).
In a multiorbital model of the cuprate high-temperature superconductors soft antiferromagnetic (AF) modes are assumed to reconstruct the Fermi surface to form nodal pockets. The subsequent charge ordering transition leads to a phase with a spatially modulated transfer of charge between neighboring oxygen p_x and p_y orbitals and also weak modulations of the charge density on the copper d_{x^2-y^2} orbitals. As a prime result of the AF Fermi surface reconstruction, the wavevectors of the charge modulations are oriented along the crystalline axes with a periodicity that agrees quantitatively with experiments. This resolves a discrepancy between experiments, which find axial order, and previous theoretical calculations, which find modulation wavevectors along the Brillouin zone (BZ) diagonal. The axial order is stabilized by hopping processes via the Cu4s orbital, which is commonly not included in model analyses of cuprate superconductors.
When the Mott insulating state is suppressed by charge carrier doping, the pseudogap phenomenon emerges, where at the low-temperature limit, superconductivity coexists with some ordered electronic states. Within the framework of the kinetic-energy-driven superconductivity, the nature of the pair-density-wave order in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the onset of the pair-density-wave order does not produce an ordered gap, but rather a novel hidden order as a result of the interplay of the charge-density-wave order with superconductivity. As a consequence, this novel hidden pair-density-wave order as a subsidiary order parameter coexists with the charge-density-wave order in the superconducting-state, and is absent from the normal-state.
The unconventional normal-state properties of the cuprates are often discussed in terms of emergent electronic order that onsets below a putative critical doping of xc = 0.19. Charge-density wave (CDW) correlations represent one such order; however, experimental evidence for such order generally spans a limited range of doping that falls short of the critical value xc, leading to questions regarding its essential relevance. Here, we use x-ray diffraction to demonstrate that CDW correlations in La2-xSrxCuO4 persist up to a doping of at least x = 0.21. The correlations show strong changes through the superconducting transition, but no obvious discontinuity through xc = 0.19, despite changes in Fermi surface topology and electronic transport at this doping. These results demonstrate the interaction between CDWs and superconductivity even in overdoped cuprates and prompt a reconsideration of the role of CDW correlations in the high-temperature cuprate phase diagram.