No Arabic abstract
Stationary non-equilibrium states describe steady flows through macroscopic systems. Although they represent the simplest generalization of equilibrium states, they exhibit a variety of new phenomena. Within a statistical mechanics approach, these states have been the subject of several theoretical investigations, both analytic and numerical. The macroscopic fluctuation theory, based on a formula for the probability of joint space-time fluctuations of thermodynamic variables and currents, provides a unified macroscopic treatment of such states for driven diffusive systems. We give a detailed review of this theory including its main predictions and most relevant applications.
The Macroscopic Fluctuation Theory is an effective framework to describe transports and their fluctuations in classical out-of-equilibrium diffusive systems. Whether the Macroscopic Fluctuation Theory may be extended to the quantum realm and which form this extension may take is yet terra incognita but is a timely question. In this short introductory review, I discuss possible questions that a quantum version of the Macroscopic Fluctuation Theory could address and how analysing Quantum Simple Exclusion Processes yields pieces of answers to these questions.
We examine the Hall conductivity of macroscopic two-dimensional quantum system, and show that the observed quantities can sometimes violate the fluctuation dissipation theorem (FDT), even in the linear response (LR) regime infinitesimally close to equilibrium. The violation can be an order of magnitude larger than the Hall conductivity itself at low temperature and in strong magnetic field, which are accessible in experiments. We further extend the results to general systems and give a necessary condition for such large-scale violation to happen. This violation is a genuine quantum phenomenon that appears on a macroscopic scale. Our results are not only bound to the development of the fundamental issues of nonequilibrium physics, but the idea is also meaningful for practical applications, since the FDT is widely used for the estimation of noises from the LRs.
In a recent work, Jarzynski and Wojcik (2004 Phys. Rev. Lett. 92, 230602) have shown by using the properties of Hamiltonian dynamics and a statistical mechanical consideration that, through contact, heat exchange between two systems initially prepared at different temperatures obeys a fluctuation theorem. Here, another proof is presented, in which only macroscopic thermodynamic quantities are employed. The detailed balance condition is found to play an essential role. As a result, the theorem is found to hold under very general conditions.
In standard nucleation theory, the nucleation process is characterized by computing $DeltaOmega(V)$, the reversible work required to form a cluster of volume $V$ of the stable phase inside the metastable mother phase. However, other quantities besides the volume could play a role in the free energy of cluster formation, and this will in turn affect the nucleation barrier and the shape of the nucleus. Here we exploit our recently introduced mesoscopic theory of nucleation to compute the free energy cost of a nearly-spherical cluster of volume $V$ and a fluctuating surface area $A$, whereby the maximum of $DeltaOmega(V)$ is replaced by a saddle point in $DeltaOmega(V,A)$. Compared to the simpler theory based on volume only, the barrier height of $DeltaOmega(V,A)$ at the transition state is systematically larger by a few $k_BT$. More importantly, we show that, depending on the physical situation, the most probable shape of the nucleus may be highly non spherical, even when the surface tension and stiffness of the model are isotropic. Interestingly, these shape fluctuations do not influence or modify the standard Classical Nucleation Theory manner of extracting the interface tension from the logarithm of the nucleation rate near coexistence.
Starting from the microscopic description of a normal fluid in terms of any kind of local interacting many-particle theory we present a well defined step by step procedure to derive the hydrodynamic equations for the macroscopic phenomena. We specify the densities of the conserved quantities as the relevant hydrodynamic variables and apply the methods of non-equilibrium statistical mechanics with projection operator techniques. As a result we obtain time-evolution equations for the hydrodynamic variables with three kinds of terms on the right-hand sides: reversible, dissipative and fluctuating terms. In their original form these equations are completely exact and contain nonlocal terms in space and time which describe nonlocal memory effects. Applying a few approximations the nonlocal properties and the memory effects are removed. As a result we find the well known hydrodynamic equations of a normal fluid with Gaussian fluctuating forces. In the following we investigate if and how the time-inversion invariance is broken and how the second law of thermodynamics comes about. Furthermore, we show that the hydrodynamic equations with fluctuating forces are equivalent to stochastic Langevin equations and the related Fokker-Planck equation. Finally, we investigate the fluctuation theorem and find a modification by an additional term.