Do you want to publish a course? Click here

The way from microscopic many-particle theory to macroscopic hydrodynamics

86   0   0.0 ( 0 )
 Added by Rudolf Haussmann
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Starting from the microscopic description of a normal fluid in terms of any kind of local interacting many-particle theory we present a well defined step by step procedure to derive the hydrodynamic equations for the macroscopic phenomena. We specify the densities of the conserved quantities as the relevant hydrodynamic variables and apply the methods of non-equilibrium statistical mechanics with projection operator techniques. As a result we obtain time-evolution equations for the hydrodynamic variables with three kinds of terms on the right-hand sides: reversible, dissipative and fluctuating terms. In their original form these equations are completely exact and contain nonlocal terms in space and time which describe nonlocal memory effects. Applying a few approximations the nonlocal properties and the memory effects are removed. As a result we find the well known hydrodynamic equations of a normal fluid with Gaussian fluctuating forces. In the following we investigate if and how the time-inversion invariance is broken and how the second law of thermodynamics comes about. Furthermore, we show that the hydrodynamic equations with fluctuating forces are equivalent to stochastic Langevin equations and the related Fokker-Planck equation. Finally, we investigate the fluctuation theorem and find a modification by an additional term.



rate research

Read More

56 - Sven Banisch 2015
An analytical treatment of a simple opinion model with contrarian behavior is presented. The focus is on the stationary dynamics of the model and in particular on the effect of inhomogeneities in the interaction topology on the stationary behavior. We start from a micro-level Markov chain description of the model. Markov chain aggregation is then used to derive a macro chain for the complete graph as well as a meso-level description for the two-community graph composed of two (weakly) coupled sub-communities. In both cases, a detailed understanding of the model behavior is possible using Markov chain tools. More importantly, however, this setting provides an analytical scenario to study the discrepancy between the homogeneous mixing case and the model on a slightly more complex topology. We show that memory effects are introduced at the macro level when we aggregate over agent attributes without sensitivity to the microscopic details and quantify these effects using concepts from information theory. In this way, the method facilitates the analysis of the relation between microscopic processes and a their aggregation to a macroscopic level of description and informs about the complexity of a system introduced by heterogeneous interaction relations.
123 - Shin-ichi Sasa 2013
Hamiltonian particle systems may exhibit non-linear hydrodynamic phenomena as the time evolution of the density fields of energy, momentum, and mass. In this Letter, an exact equation describing the time evolution is derived assuming the local Gibbs distribution at initial time. The key concept in the derivation is an identity similar to the fluctuation theorems. The Navier-Stokes equation is obtained as a result of simple perturbation expansions in a small parameter that represents the scale separation.
177 - Rupert Small 2014
We present a new method which uses Feynman-like diagrams to calculate the statistical quantities of embedded many-body random matrix problems. The method provides a promising alternative to existing techniques and offers many important simplifications. We use it here to find the fourth, sixth and eighth moments of the level density for k fermions or bosons interacting through a random hermitian potential in the limit where the number of possible single-particle states is taken to infinity. All share the same transition, starting immediately after 2k = m, from moments arising from a semi-circular level density to gaussian moments. The results also reveal a striking feature; the domain of the 2nth moment is naturally divided into n subdomains specified by the points 2k = m, 3k = m, ..., nk = m.
Stationary non-equilibrium states describe steady flows through macroscopic systems. Although they represent the simplest generalization of equilibrium states, they exhibit a variety of new phenomena. Within a statistical mechanics approach, these states have been the subject of several theoretical investigations, both analytic and numerical. The macroscopic fluctuation theory, based on a formula for the probability of joint space-time fluctuations of thermodynamic variables and currents, provides a unified macroscopic treatment of such states for driven diffusive systems. We give a detailed review of this theory including its main predictions and most relevant applications.
219 - Leonardo De Carlo 2019
The main subject of the thesis is the study of stationary nonequilibrium states trough the use of microscopic stochastic models that encode the physical interaction in the rules of Markovian dynamics for particles configurations. These models are known as interacting particles systems and are simple enough to be treated analytically but also complex enough to capture essential physical behaviours. The thesis is organized in two parts. The part 1 is devoted to the microscopic theory of the stationary states. We characterize these states developing some general structures that have an interest in themselves. In this part there is an interlude dedicated to discrete calculus on discrete manifolds with an exposition a little bit different to the one available in literature and some original definitions. The part 2 studies the problem macroscopically. In particular we consider the large deviations asymptotic behavior for a class of solvable one dimensional models of heat conduction. Both part 1 and 2 begin with an introduction of motivational character followed by an overview of the relevant results and a summary explaining the organization. Even tough the two parts are strictly connected they can be read independently after chapter 1. The material is presented in such a way to be self-consistent as much as possible.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا