No Arabic abstract
We present a new determination of the solar fluorine abundance together with abundance measurements of fluorine in two Galactic open clusters. We analyzed a sunspot spectrum, observed by L. Wallace and W. Livingston with the FTS at the McMath/Pierce Solar Telescope situated on Kitt Peak and spectra of four giants in the old cluster M 67 ($sim$4.5 Gyr) and three giants in the young cluster NGC 6404 ($sim$0.5 Gyr), obtained with the CRIRES spectrograph at VLT. Fluorine was measured through synthesis of the available HF lines. We adopted the recent set of experimental molecular parameters of HF delivered by the HITRAN database, and found a new solar fluorine abundance of $A(F) = 4.40pm 0.25$, in good agreement with the M 67 average fluorine abundance of $A(F) = 4.49pm 0.20$. The new solar abundance is in a very good agreement with the meteoritic value. The used modern spectrosynthesis tools, the agreement with the meteoritic value and with the results in open cluster M67, known to be a solar analogue, make our solar determination very robust. At the same time, the fluorine measurement in the above-mentioned open clusters is the first step in the understanding of its evolution during the last $sim$10 Gyr in the Galactic disk. In order to develop this project, a larger sample of open clusters is required, so that it would allow us to trace the evolution of fluorine as a function of time and, in turn, to better understand its origin.
We present chemical abundances for the elements carbon, sodium, and fluorine in 15 red giants of the globular cluster M 4, as well as six red giants of the globular cluster $omega$ Centauri. The chemical abundances were calculated in LTE via spectral synthesis. The spectra analyzed are high-resolution spectra obtained in the near-infrared region around $lambda$2.3$mu$m with the Phoenix spectrograph on the 8.1m Gemini South Telescope, the IGRINS spectrograph on the McDonald Observatory 2.7m Telescope, and the CRIRES spectrograph on the ESO 8.2m Very Large Telescope. The results indicate a significant reduction in the fluorine abundances when compared to previous values from the literature for M 4 and $omega$ Centauri, due to a downward revision in the excitation potentials of the HF(1-0) R9 line used in the analysis. The fluorine abundances obtained for the M 4 red giants are found to be anti-correlated with those of Na, following the typical pattern of abundance variations seen in globular clusters between distinct stellar populations. In M 4, as the Na abundance increases by $sim$+0.4 dex, the F abundance decreases by $sim$-0.2 dex. A comparison with abundance predictions from two sets of stellar evolution models finds that the models predict somewhat less F depletion ($sim$-0.1 dex) for the same increase of +0.4 dex in Na.
Fluorine (19F) abundances (or upper limits) are derived in six extragalactic AGB carbon stars from the HF(1-0) R9 line at 2.3358 mu in high resolution spectra. The stars belong to the Local Group galaxies LMC, SMC and Carina dwarf spheroidal, spanning more than a factor 50 in metallicity. This is the first study to probe the behaviour of F with metallicity in intrinsic extragalactic C-rich AGB stars. Fluorine could be measured only in four of the target stars, showing a wide range in F-enhancements. Our F abundance measurements together with those recently derived in Galactic AGB carbon stars show a correlation with the observed carbon and s-element enhancements. The observed correlations however, display a different dependence on the stellar metallicity with respect to theoretical predictions in low mass, low metallicity AGB models. We briefly discuss the possible reasons for this discrepancy. If our findings are confirmed in a larger number of metal-poor AGBs, the issue of F production in AGB stars will need to be revisited.
We present new fluorine abundance estimations in two carbon enhanced metal-poor (CEMP) stars, HE 1429-0551 and HE 1305+0007. HE 1429-0551 is also enriched in slow neutron-capture process (s-process) elements, a CEMP-s, and HE 1305+0007 is enhanced in both, slow and rapid neutron-capture process elements, a CEMP-s/r. The F abundances estimates are derived from the vibration-rotation transition of the HF molecule at 23358.6 A using high-resolution infrared spectra obtained with the Immersion Grating Infrared Spectrometer (IGRINS) at the 4m-class Lowell Discovery Telescope. Our results include a F abundance measurement in HE 1429-0551 of A(F) = +3.93 ([F/Fe] = +1.90) at [Fe/H] = -2.53, and a F upper limit in HE 1305+0007 of A(F) < +3.28 ([F/Fe] < +1.00) at [Fe/H] = -2.28. Our new derived F abundance in HE 1429-0551 makes this object the most metal-poor star where F has been detected. We carefully compare these results with literature values and state-of-the-art CEMP-s model predictions including detailed AGB nucleosynthesis and binary evolution. The modelled fluorine abundance for HE 1429-0551 is within reasonable agreement with our observed abundance, although is slightly higher than our observed value. For HE 1429-0551, our findings support the scenario via mass transfer by a primary companion during its thermally-pulsing phase. Our estimated upper limit in HE 1305+0007, along with data from the literature, shows large discrepancies compared with AGB models. The discrepancy is principally due to the simultaneous s- and r-process element enhancements which the model struggles to reproduce.
In the light of the new observational data related to fluorine abundances in the solar neighborhood stars, we present here chemical evolution models testing different fluorine nucleosynthesis prescriptions with the aim to best fit those new data related to the abundance ratios [F/O] vs. [O/H] and [F/Fe] vs. [Fe/H]. The adopted chemical evolution models are: i) the classical two-infall model which follows the chemical evolution of halo-thick disk and thin disk phases, ii) and the one-infall model designed only for the thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of different nucleosynthesis yield sources: AGB stars, Wolf-Rayet stars, Type II and Type Ia supernovae, and novae. We find that the fluorine production is dominated by AGB stars but the Wolf-Rayet stars are required to reproduce the trend of the observed data in the solar neighborhood by Jonsson et al. (2017a) with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of two of the Wolf-Rayet yields given by Meynet & Arnould (2000). We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] vs. [O/H] relation. The inclusion of the fluorine production by Wolf-Rayet stars seems to be essential to reproduce the observed ratio [F/O] vs [O/H] in the solar neighborhood by Jonsson et al. (2017a). Moreover, the inclusion of novae helps substantially to reproduce the observed fluorine secondary behavior.
We determined the cluster apex coordinates, studied the substructures and performed membership analysis in the central part (34X33) of the open cluster M 67. We used the individual stellar apexes method developed earlier and classical technique of proper motion diagrams in coordinate system connected with apex. The neighbour-to-neighbour distance technique was applied to detect space details. The membership list was corrected and some stars were excluded from the most probable members list. The apex coordinates have been determined as: A0=132.97deg+/-0.81deg and D0=11.85deg+/-0.90deg. The 2D-space star density field was analysed and high degree of inhomogeneity was found.