No Arabic abstract
In this paper, we propose a 2D based partition method for solving the problem of Ranking under Team Context(RTC) on datasets without a priori. We first map the data into 2D space using its minimum and maximum value among all dimensions. Then we construct window queries with consideration of current team context. Besides, during the query mapping procedure, we can pre-prune some tuples which are not top ranked ones. This pre-classified step will defer processing those tuples and can save cost while providing solutions for the problem. Experiments show that our algorithm performs well especially on large datasets with correctness.
Context-aware database has drawn increasing attention from both industry and academia recently by taking users current situation and environment into consideration. However, most of the literature focus on individual context, overlooking the team users. In this paper, we investigate how to integrate team context into database query process to help the users get top-ranked database tuples and make the team more competitive. We introduce naive and optimized query algorithm to select the suitable records and show that they output the same results while the latter is more computational efficient. Extensive empirical studies are conducted to evaluate the query approaches and demonstrate their effectiveness and efficiency.
In stream processing, stream join is one of the critical sources of performance bottlenecks. The sliding-window-based stream join provides a precise result but consumes considerable computational resources. The current solutions lack support for the join predicates on large windows. These algorithms and their hardware accelerators are either limited to equi-join or use a nested loop join to process all the requests. In this paper, we present a new algorithm called PanJoin which has high throughput on large windows and supports both equi-join and non-equi-join. PanJoin implements three new data structures to reduce computations during the probing phase of stream join. We also implement the most hardware-friendly data structure, called BI-Sort, on FPGA. Our evaluation shows that PanJoin outperforms several recently proposed stream join methods by more than 1000x, and it also adapts well to highly skewed data.
Crowdsourcing can be used to determine a total order for an object set (e.g., the top-10 NBA players) based on crowd opinions. This ranking problem is often decomposed into a set of microtasks (e.g., pairwise comparisons). These microtasks are passed to a large number of workers and their answers are aggregated to infer the ranking. The number of microtasks depends on the budget allocated for the problem. Intuitively, the higher the number of microtask answers, the more accurate the ranking becomes. However, it is often hard to decide the budget required for an accurate ranking. We study how a ranking process can be terminated early, and yet achieve a high-quality ranking and great savings in the budget. We use statistical tools to estimate the quality of the ranking result at any stage of the crowdsourcing process and terminate the process as soon as the desired quality is achieved. Our proposed early-stopping module can be seamlessly integrated with most existing inference algorithms and task assignment methods. We conduct extensive experiments and show that our early-stopping module is better than other existing general stopping criteria. We also implement a prototype system to demonstrate the usability and effectiveness of our approach in practice.
The task of object viewpoint estimation has been a challenge since the early days of computer vision. To estimate the viewpoint (or pose) of an object, people have mostly looked at object intrinsic features, such as shape or appearance. Surprisingly, informative features provided by other, extrinsic elements in the scene, have so far mostly been ignored. At the same time, contextual cues have been proven to be of great benefit for related tasks such as object detection or action recognition. In this paper, we explore how information from other objects in the scene can be exploited for viewpoint estimation. In particular, we look at object configurations by following a relational neighbor-based approach for reasoning about object relations. We show that, starting from noisy object detections and viewpoint estimates, exploiting the estimated viewpoint and location of other objects in the scene can lead to improved object viewpoint predictions. Experiments on the KITTI dataset demonstrate that object configurations can indeed be used as a complementary cue to appearance-based viewpoint estimation. Our analysis reveals that the proposed context-based method can improve object viewpoint estimation by reducing specific types of viewpoint estimation errors commonly made by methods that only consider local information. Moreover, considering contextual information produces superior performance in scenes where a high number of object instances occur. Finally, our results suggest that, following a cautious relational neighbor formulation brings improvements over its aggressive counterpart for the task of object viewpoint estimation.
Contributing to the literature on aptitude-treatment interactions between worked examples and problem-solving, this paper addresses differential learning from the two approaches when students are positioned as domain experts learning new concepts. Our evaluation is situated in a team project that is part of an advanced software engineering course. In this course, students who possess foundational domain knowledge but are learning new concepts engage alternatively in programming followed by worked example-based reflection. They are either allowed to finish programming or are curtailed after a pre-specified time to participate in a longer worked example-based reflection. We find significant pre- to post-test learning gains in both conditions. Then, we not only find significantly more learning when students participated in longer worked example-based reflections but also a significant performance improvement on a problem-solving transfer task. These findings suggest that domain experts learning new concepts benefit more from worked example-based reflections than from problem-solving.