Do you want to publish a course? Click here

Herschel/PACS spectroscopy of trace gases of the stratosphere of Titan

159   0   0.0 ( 0 )
 Added by Miriam Rengel
 Publication date 2014
  fields Physics
and research's language is English
 Authors Miriam Rengel




Ask ChatGPT about the research

Aims: We investigate the composition of Titans stratosphere from new medium-resolution far-infrared observations performed with the full range of Herschels Photodetector Array Camera and Spectrometer (PACS) (51-220 $mu$m at a resolution $lambda$/$Delta lambda$ ranging from 950 to 5500 depending on wavelength and grating order). Methods: Using PACS, we obtained the spectral emission of several features of the Titans stratosphere. We used a line-by-line radiative transfer code and the least-squares fitting technique to infer the abundances of the trace constituents. Results: Numerous spectral features attributable to CH$_4$, CO, HCN, and H$_2$O are present. From the flux density spectrum measured and by a detailed comparison with synthetic spectra, we constrain the stratospheric abundance of CH4, which is assumed to be constant with altitude, to be 1.29 $pm$ 0.03%. Similarly, we constrain the abundance of CO to be 50 $pm$ 2 ppm, and the HCN vertical distribution consistent with an increase from 40 ppb at $sim$100 km to 4 ppm at $sim$200 km, which is an altitude region where the HCN signatures are sensitive. Measurements of three H$_2$O rotational lines confirm the H$_2$O distribution profile recently obtained with Herschel. Furthermore, we determine the isotopic ratios $^{12}$C/$^{13}$C in CO and HCN to be 124 $pm$ 58, and 66 $pm$ 35, respectively. Comparisons between our results and the values derived with other instruments show that our results are consistent with the vertical distributions and isotopic ratios in previous studies, except for the HCN distribution obtained with Cassini/CIRS, which does not agree with the PACS lines at the 1-sigma confidence interval.



rate research

Read More

In this paper we describe a first quantitative search for several molecules in Titans stratosphere in Cassini CIRS infrared spectra. These are: ammonia (NH3), methanol (CH3OH), formaldehyde (H2CO), and acetonitrile (CH3CN), all of which are predicted by photochemical models but only the last of which observed, and not in the infrared. We find non-detections in all cases, but derive upper limits on the abundances from low-noise observations at 25{deg}S and 75{deg}N. Comparing these constraints to model predictions, we conclude that CIRS is highly unlikely to see NH3 or CH3OH emissions. However, CH3CN and H2CO are closer to CIRS detectability, and we suggest ways in which the sensitivity threshold may be lowered towards this goal.
In this chapter we describe the remote sensing measurement of nitrogen-bearing species in Titans atmosphere by the Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft. This instrument, which detects the thermal infrared spectrum from 10-1500 cm-1 (1000-7 microns) is sensitive to vibrational emissions of gases and condensates in Titans stratosphere and lower mesosphere, permitting the measurement of ambient temperature and the abundances of gases and particulates. Three N-bearing species are firmly detected: HCN, HC3N and C2N2, and their vertical and latitudinal distributions have been mapped. In addition, ices of HC3N and possibly C4N2 are also seen in the far-infrared spectrum at high latitudes during the northern winter. The HC(15)N isotopologue has been measured, permitting the inference of the 14N/15N ratio in this species, which differs markedly (lower) than in the bulk nitrogen reservoir (N2). We also describe the search in the CIRS spectrum, and inferred upper limits, for NH3 and CH3CN. CIRS is now observing seasonal transition on Titan and the gas abundance distributions are changing accordingly, acting as tracers of the changing atmospheric circulation. The prospects for further CIRS science in the remaining five years of the Cassini mission are discussed.
We report on the initial analysis of a Herschel/PACS full range spectrum of Neptune, covering the 51-220 micrometer range with a mean resolving power of ~ 3000, and complemented by a dedicated observation of CH4 at 120 micrometers. Numerous spectral features due to HD (R(0) and R(1)), H2O, CH4, and CO are present, but so far no new species have been found. Our results indicate that (i) Neptunes mean thermal profile is warmer by ~ 3 K than inferred from the Voyager radio-occultation; (ii) the D/H mixing ratio is (4.5+/-1) X 10**-5, confirming the enrichment of Neptune in deuterium over the protosolar value (~ 2.1 X 10**-5); (iii) the CH4 mixing ratio in the mid stratosphere is (1.5+/-0.2) X 10**-3, and CH4 appears to decrease in the lower stratosphere at a rate consistent with local saturation, in agreement with the scenario of CH4 stratospheric injection from Neptunes warm south polar region; (iv) the H2O stratospheric column is (2.1+/-0.5) X 10**14 cm-2 but its vertical distribution is still to be determined, so the H2O external flux remains uncertain by over an order of magnitude; and (v) the CO stratospheric abundance is about twice the tropospheric value, confirming the dual origin of CO suspected from ground-based millimeter/submillimeter observations.
86 - Dario Fadda 2016
The Ge:Ga detectors used in the PACS spectrograph onboard the Herschel space telescope react to changes of the incident flux with a certain delay. This generates transient effects on the resulting signal which can be important and last for up to an hour. The paper presents a study of the effects of transients on the detected signal and proposes methods to mitigate them especially in the case of the unchopped mode. Since transients can arise from a variety of causes, we classified them in three main categories: transients caused by sudden variations of the continuum due to the observational mode used; transients caused by cosmic ray impacts on the detectors; transients caused by a continuous smooth variation of the continuum during a wavelength scan. We propose a method to disentangle these effects and treat them separately. In particular, we show that a linear combination of three exponential functions is needed to fit the response variation of the detectors during a transient. An algorithm to detect, fit, and correct transient effects is presented. The solution proposed to correct the signal for the effects of transients substantially improves the quality of the final reduction with respect to the standard methods used for archival reduction in the case where transient effects are most pronounced. The programs developed to implement the corrections are offered through two new interactive data reduction pipelines in the latest releases of the Herschel Interactive Processing Environment.
Aims: We present preliminary results of the first Herschel spectroscopic observations of NGC7129 FIRS2, an intermediate mass star-forming region. We attempt to interpret the observations in the framework of an in-falling spherical envelope. Methods: The PACS instrument was used in line spectroscopy mode (R=1000-5000) with 15 spectral bands between 63 and 185 microns. This provided good detections of 26 spectral lines seen in emission, including lines of H2O, CO, OH, O I, and C II. Results: Most of the detected lines, particularly those of H2O and CO, are substantially stronger than predicted by the spherical envelope models, typically by several orders of magnitude. In this paper we focus on what can be learned from the detected CO emission lines. Conclusions: It is unlikely that the much stronger than expected line emission arises in the (spherical) envelope of the YSO. The region hot enough to produce such high excitation lines within such an envelope is too small to produce the amount of emission observed. Virtually all of this high excitation emission must arise in structures such as as along the walls of the outflow cavity with the emission produced by a combination of UV photon heating and/or non-dissociative shocks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا