Do you want to publish a course? Click here

On the Critical Exponent of Infinitely Generated Veech Groups

136   0   0.0 ( 0 )
 Added by Ralf Lehnert
 Publication date 2014
  fields
and research's language is English
 Authors Ralf Lehnert




Ask ChatGPT about the research

We prove the existence of Veech groups having a critical exponent strictly greater than any elementary Fuchsian group (i.e. $>frac{1}{2}$) but strictly smaller than any lattice (i.e. $<1$). More precisely, every affine covering of a primitive L-shaped Veech surface $X$ ramified over the singularity and a non-periodic connection point $Pin X$ has such a Veech group. Hubert and Schmidt showed that these Veech groups are infinitely generated and of the first kind. We use a result of Roblin and Tapie which connects the critical exponent of the Veech group of the covering with the Cheeger constant of the Schreier graph of $mathrm{SL}(X)/mathrm{Stab}_{mathrm{SL}(X)}(P)$. The main task is to show that the Cheeger constant is strictly positive, i.e. the graph is non-amenable. In this context, we introduce a measure of the complexity of connection points that helps to simplify the graph to a forest for which non-amenability can be seen easily.



rate research

Read More

For each stratum of the space of translation surfaces, we introduce an infinite translation surface containing in an appropriate manner a copy of every translation surface of the stratum. Given a translation surface $(X, omega)$ in the stratum, a matrix is in its Veech group $mathrm{SL}(X,omega)$ if and only if an associated affine automorphism of the infinite surface sends each of a finite set, the ``marked {em Voronoi staples}, arising from orientation-paired segments appropriately perpendicular to Voronoi 1-cells, to another pair of orientation-paired ``marked segments. We prove a result of independent interest. For each real $age sqrt{2}$ there is an explicit hyperbolic ball such that for any Fuchsian group trivially stabilizing $i$, the Dirichlet domain centered at $i$ of the group already agrees within the ball with the intersection of the hyperbolic half-planes determined by the group elements whose Frobenius norm is at most $a$. %When $mathrm{SL}(X,omega)$ is a lattice we use this to give a condition guaranteeing that the full group $mathrm{SL}(X,omega)$ has been computed. Together, these results give rise to a new algorithm for computing Veech groups.
145 - Max Bauer 2014
An Abelian differential gives rise to a flat structure (translation surface) on the underlying Riemann surface. In some directions the directional flow on the flat surface may contain a periodic region that is made up of maximal cylinders filled by parallel geodesics of the same length. The growth rate of the number of such regions counted with weights, as a function of the length, is quadratic with a coefficient, called Siegel-Veech constant, that is shared by almost all translation surfaces in the ambient stratum. We evaluate various Siegel-Veech constants associated to the geometry of configurations of periodic cylinders and their area, and study extremal properties of such configurations in a fixed stratum and in all strata of a fixed genus.
178 - Elise Goujard 2014
We present an explicit formula relating volumes of strata of meromorphicquadratic differentials with at most simple poles on Riemann surfacesand counting functions of the number of flat cylinders filled by closedgeodesics in associated flat metric with singularities. This generalizes the resultof Athreya, Eskin and Zorich in genus 0 to higher genera.
160 - Alex Eskin , Anton Zorich 2015
We state conjectures on the asymptotic behavior of the volumes of moduli spaces of Abelian differentials and their Siegel-Veech constants as genus tends to infinity. We provide certain numerical evidence, describe recent advances and the state of the art towards proving these conjectures.
It is observed that the conjugacy growth series of the infinite fini-tary symmetric group with respect to the generating set of transpositions is the generating series of the partition function. Other conjugacy growth series are computed, for other generating sets, for restricted permutational wreath products of finite groups by the finitary symmetric group, and for alternating groups. Similar methods are used to compute usual growth polynomials and conjugacy growth polynomials for finite symmetric groups and alternating groups, with respect to various generating sets of transpositions. Computations suggest a class of finite graphs, that we call partition-complete, which generalizes the class of semi-hamiltonian graphs, and which is of independent interest. The coefficients of a series related to the finitary alternating group satisfy congruence relations analogous to Ramanujan congruences for the partition function. They follow from partly conjectural generalized Ramanujan congruences, as we call them, for which we give numerical evidence in Appendix C.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا