Do you want to publish a course? Click here

Canonical translation surfaces for computing Veech groups

83   0   0.0 ( 0 )
 Added by Thomas Schmidt
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

For each stratum of the space of translation surfaces, we introduce an infinite translation surface containing in an appropriate manner a copy of every translation surface of the stratum. Given a translation surface $(X, omega)$ in the stratum, a matrix is in its Veech group $mathrm{SL}(X,omega)$ if and only if an associated affine automorphism of the infinite surface sends each of a finite set, the ``marked {em Voronoi staples}, arising from orientation-paired segments appropriately perpendicular to Voronoi 1-cells, to another pair of orientation-paired ``marked segments. We prove a result of independent interest. For each real $age sqrt{2}$ there is an explicit hyperbolic ball such that for any Fuchsian group trivially stabilizing $i$, the Dirichlet domain centered at $i$ of the group already agrees within the ball with the intersection of the hyperbolic half-planes determined by the group elements whose Frobenius norm is at most $a$. %When $mathrm{SL}(X,omega)$ is a lattice we use this to give a condition guaranteeing that the full group $mathrm{SL}(X,omega)$ has been computed. Together, these results give rise to a new algorithm for computing Veech groups.



rate research

Read More

143 - Ralf Lehnert 2014
We prove the existence of Veech groups having a critical exponent strictly greater than any elementary Fuchsian group (i.e. $>frac{1}{2}$) but strictly smaller than any lattice (i.e. $<1$). More precisely, every affine covering of a primitive L-shaped Veech surface $X$ ramified over the singularity and a non-periodic connection point $Pin X$ has such a Veech group. Hubert and Schmidt showed that these Veech groups are infinitely generated and of the first kind. We use a result of Roblin and Tapie which connects the critical exponent of the Veech group of the covering with the Cheeger constant of the Schreier graph of $mathrm{SL}(X)/mathrm{Stab}_{mathrm{SL}(X)}(P)$. The main task is to show that the Cheeger constant is strictly positive, i.e. the graph is non-amenable. In this context, we introduce a measure of the complexity of connection points that helps to simplify the graph to a forest for which non-amenability can be seen easily.
152 - Max Bauer 2014
An Abelian differential gives rise to a flat structure (translation surface) on the underlying Riemann surface. In some directions the directional flow on the flat surface may contain a periodic region that is made up of maximal cylinders filled by parallel geodesics of the same length. The growth rate of the number of such regions counted with weights, as a function of the length, is quadratic with a coefficient, called Siegel-Veech constant, that is shared by almost all translation surfaces in the ambient stratum. We evaluate various Siegel-Veech constants associated to the geometry of configurations of periodic cylinders and their area, and study extremal properties of such configurations in a fixed stratum and in all strata of a fixed genus.
192 - Elise Goujard 2014
We present an explicit formula relating volumes of strata of meromorphicquadratic differentials with at most simple poles on Riemann surfacesand counting functions of the number of flat cylinders filled by closedgeodesics in associated flat metric with singularities. This generalizes the resultof Athreya, Eskin and Zorich in genus 0 to higher genera.
173 - Alex Eskin , Anton Zorich 2015
We state conjectures on the asymptotic behavior of the volumes of moduli spaces of Abelian differentials and their Siegel-Veech constants as genus tends to infinity. We provide certain numerical evidence, describe recent advances and the state of the art towards proving these conjectures.
We compute explicitly the absolute contribution of square-tiled surfaces having a single horizontal cylinder to the Masur-Veech volume of any ambient stratum of Abelian differentials. The resulting count is particularly simple and efficient in the large genus asymptotics. Using the recent results of Aggarwal and of Chen-Moeller-Zagier on the long-standing conjecture about the large genus asymptotics of Masur-Veech volumes, we derive that the relative contribution is asymptotically of the order 1/d, where d is the dimension of the stratum. Similarly, we evaluate the contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes of low-dimensional strata in the moduli space of quadratic differentials. We combine this count with our recent result on equidistribution of one-cylinder square-tiled surfaces translated to the language of interval exchange transformations to compute empirically approximate values of the Masur-Veech volumes of strata of quadratic differentials of all small dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا