Do you want to publish a course? Click here

Quantum Chernoff bound as a measure of efficiency of quantum cloning for mixed states

86   0   0.0 ( 0 )
 Added by Iulia Ghiu
 Publication date 2014
  fields Physics
and research's language is English
 Authors Iulia Ghiu




Ask ChatGPT about the research

In this paper we investigate the efficiency of quantum cloning of $N$ identical mixed qubits. We employ a recently introduced measure of distinguishability of quantum states called quantum Chernoff bound. We evaluate the quantum Chernoff bound between the output clones generated by the cloning machine and the initial mixed qubit state. Our analysis is illustrated by performing numerical calculation of the quantum Chernoff bound for different scenarios that involves the number of initial qubits $N$ and the number of output imperfect copies $M$.

rate research

Read More

We evaluate a Gaussian distance-type degree of nonclassicality for a single-mode Gaussian state of the quantum radiation field by use of the recently discovered quantum Chernoff bound. The general properties of the quantum Chernoff overlap and its relation to the Uhlmann fidelity are interestingly illustrated by our approach.
We consider the problem of discriminating two different quantum states in the setting of asymptotically many copies, and determine the optimal strategy that minimizes the total probability of error. This leads to the identification of the quantum Chernoff bound, thereby solving a long standing open problem. The bound reduces to the classical Chernoff bound when the quantum states under consideration commute. The quantum Chernoff bound is the natural symmetric distance measure between quantum states because of its clear operational meaning and because of the fact that it does not seem to share the undesirable features of other distance measures like the fidelity, the trace norm and the relative entropy.
71 - A. Carlini , A. Hosoya , T. Koike 2007
We present a general formalism based on the variational principle for finding the time-optimal quantum evolution of mixed states governed by a master equation, when the Hamiltonian and the Lindblad operators are subject to certain constraints. The problem reduces to solving first a fundamental equation (the {it quantum brachistochrone}) for the Hamiltonian, which can be written down once the constraints are specified, and then solving the constraints and the master equation for the Lindblad and the density operators. As an application of our formalism, we study a simple one-qubit model where the optimal Lindblad operators control decoherence and can be simulated by a tunable coupling with an ancillary qubit. It is found that the evolution through mixed states can be more efficient than the unitary evolution between given pure states. We also discuss the mixed state evolution as a finite time unitary evolution of the system plus an environment followed by a single measurement. For the simplest choice of the constraints, the optimal duration time for the evolution is an exponentially decreasing function of the environments degrees of freedom.
We propose an alternative fidelity measure (namely, a measure of the degree of similarity) between quantum states and benchmark it against a number of properties of the standard Uhlmann-Jozsa fidelity. This measure is a simple function of the linear entropy and the Hilbert-Schmidt inner product between the given states and is thus, in comparison, not as computationally demanding. It also features several remarkable properties such as being jointly concave and satisfying all of Jozsas axioms. The trade-off, however, is that it is supermultiplicative and does not behave monotonically under quantum operations. In addition, new metrics for the space of density matrices are identified and the joint concavity of the Uhlmann-Jozsa fidelity for qubit states is established.
Recently, a new class of $W$-states has been defined by Agarwal and Pati cite{agarwal} and it has been shown that they can be used as a quantum channel for teleportation and superdense coding. In this work, we identify those three-qubit states from the set of the new class of $W$-states which are most efficient or suitable for quantum teleportation. We show that with some probability $|W_1>=(1/2)(|100>+|010>+sqrt{2}|001>)$ is best suited for teleportation channel in the sense that it does not depend on the input state.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا