No Arabic abstract
We present a general formalism based on the variational principle for finding the time-optimal quantum evolution of mixed states governed by a master equation, when the Hamiltonian and the Lindblad operators are subject to certain constraints. The problem reduces to solving first a fundamental equation (the {it quantum brachistochrone}) for the Hamiltonian, which can be written down once the constraints are specified, and then solving the constraints and the master equation for the Lindblad and the density operators. As an application of our formalism, we study a simple one-qubit model where the optimal Lindblad operators control decoherence and can be simulated by a tunable coupling with an ancillary qubit. It is found that the evolution through mixed states can be more efficient than the unitary evolution between given pure states. We also discuss the mixed state evolution as a finite time unitary evolution of the system plus an environment followed by a single measurement. For the simplest choice of the constraints, the optimal duration time for the evolution is an exponentially decreasing function of the environments degrees of freedom.
We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated through two examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance.
Applications of quantum technology often require fidelities to quantify performance. These provide a fundamental yardstick for the comparison of two quantum states. While this is straightforward in the case of pure states, it is much more subtle for the more general case of mixed quantum states often found in practice. A large number of different proposals exist. In this review, we summarize the required properties of a quantum fidelity measure, and compare them, to determine which properties each of the different measures has. We show that there are large classes of measures that satisfy all the required properties of a fidelity measure, just as there are many norms of Hilbert space operators, and many measures of entropy. We compare these fidelities, with detailed proofs of their properties. We also summarize briefly the applications of these measures in teleportation, quantum memories, quantum computers, quantum communications, and quantum phase-space simulations.
We introduce a new functional to estimate the producibility of mixed quantum states. When applicable, this functional outperforms the quantum Fisher information, and can be operatively exploited to characterize quantum states and phases by multipartite entanglement. The rationale is that producibility is expressible in terms of one- and two-point correlation functions only. This is especially valuable whenever the experimental measurements and the numerical simulation of other estimators result to be difficult, if not out of reach. We trace the theoretical usability perimeter of the new estimator and provide simulational evidence of paradigmatic spin examples.
In this brief comment we attempt to clarify the apparent discrepancy between the papers [1] and [2] on the quantum brachistochrone, namely whether it is possible to use a judicious mixture of Hermitian and non-Hermitian quantum mechanics to evade the standard lower limit on the time taken for evolution by a Hermitian Hamiltonian with given energy dispersion between two given states.
Entanglement is closely related to some fundamental features of the dynamics of composite quantum systems: quantum entanglement enhances the speed of evolution of certain quantum states, as measured by the time required to reach an orthogonal state. The concept of speed of quantum evolution constitutes an important ingredient in any attempt to determine the fundamental limits that basic physical laws impose on how fast a physical system can process or transmit information. Here we explore the relationship between entanglement and the speed of quantum evolution in the context of the quantum brachistochrone problem. Given an initial and a final state of a composite system we consider the amount of entanglement associated with the brachistochrone evolution between those states, showing that entanglement is an essential resource to achieve the alluded time-optimal quantum evolution.