Do you want to publish a course? Click here

Massive Compact Galaxies with High-Velocity Outflows: Morphological Analysis and Constraints on AGN Activity

122   0   0.0 ( 0 )
 Added by Paul Sell
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the process of rapid star formation quenching in a sample of 12 massive galaxies at intermediate redshift (z~0.6) that host high-velocity ionized gas outflows (v>1000 km/s). We conclude that these fast outflows are most likely driven by feedback from star formation rather than active galactic nuclei (AGN). We use multiwavelength survey and targeted observations of the galaxies to assess their star formation, AGN activity, and morphology. Common attributes include diffuse tidal features indicative of recent mergers accompanied by bright, unresolved cores with effective radii less than a few hundred parsecs. The galaxies are extraordinarily compact for their stellar mass, even when compared with galaxies at z~2-3. For 9/12 galaxies, we rule out an AGN contribution to the nuclear light and hypothesize that the unresolved core comes from a compact central starburst triggered by the dissipative collapse of very gas-rich progenitor merging disks. We find evidence of AGN activity in half the sample but we argue that it accounts for only a small fraction (<10%) of the total bolometric luminosity. We find no correlation between AGN activity and outflow velocity and we conclude that the fast outflows in our galaxies are not powered by on-going AGN activity, but rather by recent, extremely compact starbursts.



rate research

Read More

We present the discovery of compact, obscured star formation in galaxies at z ~ 0.6 that exhibit >1000 km/s outflows. Using optical morphologies from the Hubble Space Telescope and infrared photometry from the Wide-field Infrared Survey Explorer, we estimate star formation rate (SFR) surface densities that approach Sigma_SFR ~ 3000 Msun/yr/kpc^2, comparable to the Eddington limit from radiation pressure on dust grains. We argue that feedback associated with a compact starburst in the form of radiation pressure from massive stars and ram pressure from supernovae and stellar winds is sufficient to produce the high-velocity outflows we observe, without the need to invoke feedback from an active galactic nucleus.
142 - David T. Maltby 2019
We investigate the prevalence of galactic-scale outflows in post-starburst (PSB) galaxies at high redshift ($1 < z < 1.4$), using the deep optical spectra available in the UKIDSS Ultra Deep Survey (UDS). We use a sample of $sim40$ spectroscopically confirmed PSBs, recently identified in the UDS field, and perform a stacking analysis in order to analyse the structure of strong interstellar absorption features such as Mg ii ($lambda2800$ Ang.). We find that for massive ($M_* > 10^{10}rm,M_{odot}$) PSBs at $z > 1$, there is clear evidence for a strong blue-shifted component to the Mg ii absorption feature, indicative of high-velocity outflows ($v_{rm out}sim1150pm160rm,km,s^{-1}$) in the interstellar medium. We conclude that such outflows are typical in massive PSBs at this epoch, and potentially represent the residual signature of a feedback process that quenched these galaxies. Using full spectral fitting, we also obtain a typical stellar velocity dispersion $sigma_*$ for these PSBs of $sim200rm,km,s^{-1}$, which confirms they are intrinsically massive in nature (dynamical mass $M_{rm d}sim10^{11}rm,M_{odot}$). Given that these high-$z$ PSBs are also exceptionally compact ($r_{rm e}sim1$--$2rm,kpc$) and spheroidal (Sersic index $nsim3$), we propose that the outflowing winds may have been launched during a recent compaction event (e.g. major merger or disc collapse) that triggered either a centralised starburst or active galactic nuclei (AGN) activity. Finally, we find no evidence for AGN signatures in the optical spectra of these PSBs, suggesting they were either quenched by stellar feedback from the starburst itself, or that if AGN feedback is responsible, the AGN episode that triggered quenching does not linger into the post-starburst phase.
We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive ($rm M_* sim 10^{11} M_{odot}$), compact starburst galaxies at z = 0.4-0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS, MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean $rm Sigma_{SFR} sim 3000 ,M_{odot} yr^{-1} kpc^{-2}$) and powerful galactic outflows (maximum speeds v$_{98} sim$ 1000-3000 km s$^{-1}$). Our unique data set includes an ensemble of both emission [OII]$lambdalambda$3726,3729, H$beta$, [OIII]$lambdalambda$4959,5007, H$alpha$, [NII]$lambdalambda$6548,6583, and [SII]$lambdalambda$6716,6731) and absorption MgII$lambdalambda$2796,2803, and FeII$lambda$2586) lines that allow us to investigate the kinematics of the cool gas phase (T$sim$10$^4$ K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (median n$_e sim$ 530 cm$^{-3}$), high metallicity (solar or super-solar), and, on average, high ionization parameters. We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [SII] nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extreme star formation and feedback where much of their gas is violently blown out by powerful outflows that open up channels for LyC photons to escape.
304 - Ryan Tanner 2020
A set of 66 3D hydrodynamical simulations explores how galactic stellar mass affects three-phase, starburst-driven outflows. Simulated velocities are compared to two basic analytic models: with (Johnson & Axford 1971) and without (Chevalier & Clegg 1985) a gravitational potential. For stellar mass $<10^{10}$ solar masses, simulated velocities match those of both analytical models and are unaffected by the potential; above they reduce significantly as expected from the analytic model with gravity. Gravity also affects total outflow mass and each of the three phases differently. Outflow mass in the hot, warm, and cold phases each scale with stellar mass as $log M_*=$ -0.25, -0.97, and -1.70, respectively. Thus, the commonly used Chevalier & Clegg analytic model should be modified to include gravity when applied to higher mass galaxies. In particular, using M82 as the canonical galaxy to interpret hydrodynamical simulations of starburst-driven outflows from higher mass galaxies will underestimate the retarding effect of gravity. Using the analytic model of Johnson & Axford with realistic thermalization efficiency and mass loading I find that only galaxy masses that are less than $sim10^{11.5}$ solar masses can outflow.
We investigate the relation between AGN and star formation (SF) activity at $0.5 < z < 3$ by analyzing 898 galaxies with X-ray luminous AGN ($L_X > 10^{44}$ erg s$^{-1}$) and a large comparison sample of $sim 320,000$ galaxies without X-ray luminous AGN. Our samples are selected from a large (11.8 deg$^2$) area in Stripe 82 that has multi-wavelength (X-ray to far-IR) data. The enormous comoving volume ($sim 0.3$ Gpc$^3$) at $0.5 < z < 3$ minimizes the effects of cosmic variance and captures a large number of massive galaxies ($sim 30,000$ galaxies with $M_* > 10^{11} M_{odot}$) and X-ray luminous AGN. While many galaxy studies discard AGN hosts, we fit the SED of galaxies with and without X-ray luminous AGN with Code Investigating GALaxy Emission (CIGALE) and include AGN emission templates. We find that without this inclusion, stellar masses and star formation rates (SFRs) in AGN host galaxies can be overestimated, on average, by factors of up to $sim 5$ and $sim 10$, respectively. The average SFR of galaxies with X-ray luminous AGN is higher by a factor of $sim 3$ to $10$ compared to galaxies without X-ray luminous AGN at fixed stellar mass and redshift, suggesting that high SFRs and high AGN X-ray luminosities may be fueled by common mechanisms. The vast majority ($> 95 %$) of galaxies with X-ray luminous AGN at $z=0.5-3$ do not show quenched SF: this suggests that if AGN feedback quenches SF, the associated quenching process takes a significant time to act and the quenched phase sets in after the highly luminous phases of AGN activity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا