Do you want to publish a course? Click here

Massive Galaxies Impede Massive Outflows

305   0   0.0 ( 0 )
 Added by Ryan Tanner
 Publication date 2020
  fields Physics
and research's language is English
 Authors Ryan Tanner




Ask ChatGPT about the research

A set of 66 3D hydrodynamical simulations explores how galactic stellar mass affects three-phase, starburst-driven outflows. Simulated velocities are compared to two basic analytic models: with (Johnson & Axford 1971) and without (Chevalier & Clegg 1985) a gravitational potential. For stellar mass $<10^{10}$ solar masses, simulated velocities match those of both analytical models and are unaffected by the potential; above they reduce significantly as expected from the analytic model with gravity. Gravity also affects total outflow mass and each of the three phases differently. Outflow mass in the hot, warm, and cold phases each scale with stellar mass as $log M_*=$ -0.25, -0.97, and -1.70, respectively. Thus, the commonly used Chevalier & Clegg analytic model should be modified to include gravity when applied to higher mass galaxies. In particular, using M82 as the canonical galaxy to interpret hydrodynamical simulations of starburst-driven outflows from higher mass galaxies will underestimate the retarding effect of gravity. Using the analytic model of Johnson & Axford with realistic thermalization efficiency and mass loading I find that only galaxy masses that are less than $sim10^{11.5}$ solar masses can outflow.



rate research

Read More

We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive ($rm M_* sim 10^{11} M_{odot}$), compact starburst galaxies at z = 0.4-0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS, MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean $rm Sigma_{SFR} sim 3000 ,M_{odot} yr^{-1} kpc^{-2}$) and powerful galactic outflows (maximum speeds v$_{98} sim$ 1000-3000 km s$^{-1}$). Our unique data set includes an ensemble of both emission [OII]$lambdalambda$3726,3729, H$beta$, [OIII]$lambdalambda$4959,5007, H$alpha$, [NII]$lambdalambda$6548,6583, and [SII]$lambdalambda$6716,6731) and absorption MgII$lambdalambda$2796,2803, and FeII$lambda$2586) lines that allow us to investigate the kinematics of the cool gas phase (T$sim$10$^4$ K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (median n$_e sim$ 530 cm$^{-3}$), high metallicity (solar or super-solar), and, on average, high ionization parameters. We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [SII] nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extreme star formation and feedback where much of their gas is violently blown out by powerful outflows that open up channels for LyC photons to escape.
142 - David T. Maltby 2019
We investigate the prevalence of galactic-scale outflows in post-starburst (PSB) galaxies at high redshift ($1 < z < 1.4$), using the deep optical spectra available in the UKIDSS Ultra Deep Survey (UDS). We use a sample of $sim40$ spectroscopically confirmed PSBs, recently identified in the UDS field, and perform a stacking analysis in order to analyse the structure of strong interstellar absorption features such as Mg ii ($lambda2800$ Ang.). We find that for massive ($M_* > 10^{10}rm,M_{odot}$) PSBs at $z > 1$, there is clear evidence for a strong blue-shifted component to the Mg ii absorption feature, indicative of high-velocity outflows ($v_{rm out}sim1150pm160rm,km,s^{-1}$) in the interstellar medium. We conclude that such outflows are typical in massive PSBs at this epoch, and potentially represent the residual signature of a feedback process that quenched these galaxies. Using full spectral fitting, we also obtain a typical stellar velocity dispersion $sigma_*$ for these PSBs of $sim200rm,km,s^{-1}$, which confirms they are intrinsically massive in nature (dynamical mass $M_{rm d}sim10^{11}rm,M_{odot}$). Given that these high-$z$ PSBs are also exceptionally compact ($r_{rm e}sim1$--$2rm,kpc$) and spheroidal (Sersic index $nsim3$), we propose that the outflowing winds may have been launched during a recent compaction event (e.g. major merger or disc collapse) that triggered either a centralised starburst or active galactic nuclei (AGN) activity. Finally, we find no evidence for AGN signatures in the optical spectra of these PSBs, suggesting they were either quenched by stellar feedback from the starburst itself, or that if AGN feedback is responsible, the AGN episode that triggered quenching does not linger into the post-starburst phase.
We have undertaken the largest survey for outflows within the Galactic Plane using simultaneously observed 13CO and C18O data. 325 out of a total of 919 ATLASGAL clumps have data suitable to identify outflows, and 225 (69+-3%) of them show high velocity outflows. The clumps with detected outflows show significantly higher clump masses (M_{clump}), bolometric luminosities (L_{bol}), luminosity-to-mass ratios (L_{bol}/M_{clump}) and peak H_2 column densities (N_{H_2}) compared to those without outflows. Outflow activity has been detected within the youngest quiescent clump (i.e.,70um weak) in this sample and we find that the outflow detection rate increases with M_{clump},L_{bol},L_{bol}/M_{clump} and N_{H_2},approaching 90% in some cases(uchii regions=93+-3%;masers=86+-4%;hchii regions=100%). This high detection rate suggests that outflows are ubiquitous phenomena of massive star formation. The mean outflow mass entrainment rate implies a mean accretion rate of ~10^{-4}M_odot,yr^{-1}, in full agreement with the accretion rate predicted by theoretical models of massive star formation. Outflow properties are tightly correlated with M_{clump},L_{bol} and L_{bol}/M_{clump},and show the strongest relation with the bolometric clump luminosity. This suggests that outflows might be driven by the most massive and luminous source within the clump. The correlations are similar for both low-mass and high-mass outflows over 7 orders of magnitude, indicating that they may share a similar outflow mechanism. Outflow energy is comparable to the turbulent energy within the clump, however, we find no evidence that outflows increase the level of clump turbulence as the clumps evolve. This implies that the origin of turbulence within clumps is fixed before the onset of star formation.
325 - Adam Muzzin 2009
Using a sample of nine massive compact galaxies at z ~ 2.3 with rest-frame optical spectroscopy and comprehensive U through 8um photometry we investigate how assumptions in SED modeling change the stellar mass estimates of these galaxies, and how this affects our interpretation of their size evolution. The SEDs are fit to Tau-models with a range of metallicities, dust laws, as well as different stellar population synthesis codes. These models indicate masses equal to, or slightly smaller than our default masses. The maximum difference is 0.16 dex for each parameter considered, and only 0.18 dex for the most extreme combination of parameters. Two-component populations with a maximally old stellar population superposed with a young component provide reasonable fits to these SEDs using the models of Bruzual & Charlot (2003); however, using models with updated treatment of TP-AGB stars the fits are poorer. The two-component models predict masses that are 0.08 to 0.22 dex larger than the Tau-models. We also test the effect of a bottom-light IMF and find that it would reduce the masses of these galaxies by 0.3 dex. Considering the range of allowable masses from the Tau-models, two-component fits, and IMF, we conclude that on average these galaxies lie below the mass-size relation of galaxies in the local universe by a factor of 3-9, depending on the SED models used.
In this paper we study a key phase in the formation of massive galaxies: the transition of star forming galaxies into massive (M_stars~10^11 Msun), compact (r_e~1 kpc) quiescent galaxies, which takes place from z~3 to z~1.5. We use HST grism redshifts and extensive photometry in all five 3D-HST/CANDELS fields, more than doubling the area used previously for such studies, and combine these data with Keck MOSFIRE and NIRSPEC spectroscopy. We first confirm that a population of massive, compact, star forming galaxies exists at z~2, using K-band spectroscopy of 25 of these objects at 2.0<z<2.5. They have a median NII/Halpha ratio of 0.6, are highly obscured with SFR(tot)/SFR(Halpha)~10, and have a large range of observed line widths. We infer from the kinematics and spatial distribution of Halpha that the galaxies have rotating disks of ionized gas that are a factor of ~2 more extended than the stellar distribution. By combining measurements of individual galaxies, we find that the kinematics are consistent with a nearly Keplerian fall-off from V_rot~500 km/s at 1 kpc to V_rot~250 km/s at 7 kpc, and that the total mass out to this radius is dominated by the dense stellar component. Next, we study the size and mass evolution of the progenitors of compact massive galaxies. Even though individual galaxies may have had complex histories with periods of compaction and mergers, we show that the population of progenitors likely followed a simple inside-out growth track in the size-mass plane of d(log r_e) ~ 0.3 d(log M_stars). This mode of growth gradually increases the stellar mass within a fixed physical radius, and galaxies quench when they reach a stellar density or velocity dispersion threshold. As shown in other studies, the mode of growth changes after quenching, as dry mergers take the galaxies on a relatively steep track in the size-mass plane.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا