No Arabic abstract
Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two. In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behaviour. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, we also state clearly open questions for the field. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a very low level.
Carbon nanotubes (CNT) belong to the most promising new materials which can in the near future revolutionize the conventional electronics. When sandwiched between ferromagnetic electrodes, the CNT behaves like a spacer in conventional spin-valves, leading quite often to a considerable giant magneto-resistance effect (GMR). This paper is devoted to reviewing some topics related to electron correlations in CNT. The main attention however is directed to the following effects essential for electron transport through nanotubes: (i) nanotube/electrode coupling and (ii) inter-tube interactions.It is shown that these effects may account for some recent experimental reports on GMR, including those on negative (inverse) GMR.
We report low temperature transport measurements on suspended single walled carbon nanotubes (both individual tubes and ropes). The technique we have developed, where tubes are soldered on low resistive metallic contacts across a slit, enables a good characterization of the samples by transmission electron microscopy. It is possible to obtain individual tubes with a room temperature resistance smaller than 40 kOhms, which remain metallic down to very low temperatures. When the contact pads are superconducting, nanotubes exhibit proximity induced superconductivity with surprisingly large values of supercurrent. We have also recently observed intrinsic superconductivity in ropes of single walled carbon nanotubes connected to normal contacts, when the distance between the normal electrodes is large enough, since otherwise superconductivity is destroyed by (inverse) proximity effect. These experiments indicate the presence of attractive interactions in carbon nanotubes which overcome Coulomb repulsive interactions at low temperature, and enables investigation of superconductivity in a 1D limit never explored before.
The dynamical conductance of electrically contacted single-walled carbon nanotubes is measured from dc to 10 GHz as a function of source-drain voltage in both the low-field and high-field limits. The ac conductance of the nanotube itself is found to be equal to the dc conductance over the frequency range studied for tubes in both the ballistic and diffusive limit. This clearly demonstrates that nanotubes can carry high-frequency currents at least as well as dc currents over a wide range of operating conditions. Although a detailed theoretical explanation is still lacking, we present a phenomenological model of the ac impedance of a carbon nanotube in the presence of scattering that is consistent with these results.
We have contacted single-walled carbon nanotubes after aligning the tubes by the use of surface acoustic waves. The acoustoelectric current has been measured at 4.2 K and a probing of the low-dimensional electronic states by the surface acoustic wave has been detected. By decreasing the acoustic wavelength resulting in an adjustment to the length of the defined carbon nanotube constriction a quantization of the acoustoelectric current has been observed.
We report measurements of the temperature and gate voltage dependence for individual bundles (ropes) of single-walled nanotubes. When the conductance is less than about e^2/h at room temperature, it is found to decrease as an approximate power law of temperature down to the region where Coulomb blockade sets in. The power-law exponents are consistent with those expected for electron tunneling into a Luttinger liquid. When the conductance is greater than e^2/h at room temperature, it changes much more slowly at high temperatures, but eventually develops very large fluctuations as a function of gate voltage when sufficiently cold. We discuss the interpretation of these results in terms of transport through a Luttinger liquid.