Do you want to publish a course? Click here

Geotagged tweets to inform a spatial interaction model: a case study of museums

128   0   0.0 ( 0 )
 Added by Robin Lovelace Dr
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

This paper explores the potential of volunteered geographical information from social media for informing geographical models of behavior, based on a case study of museums in Yorkshire, UK. A spatial interaction model of visitors to 15 museums from 179 administrative zones is constructed to test this potential. The main input dataset comprises geo-tagged messages harvested using the Twitter Streaming Application Programming Interface (API), filtered, analyzed and aggregated to allow direct comparison with the models output. Comparison between model output and tweet information allowed the calibration of model parameters to optimize the fit between flows to museums inferred from tweets and flow matrices generated by the spatial interaction model. We conclude that volunteered geographic information from social media sites have great potential for informing geographical models of behavior, especially if the volume of geo-tagged social media messages continues to increase. However, we caution that volunteered geographical information from social media has some major limitations so should be used only as a supplement to more consistent data sources or when official datasets are unavailable.



rate research

Read More

Describing the dynamics of a city is a crucial step to both understanding the human activity in urban environments and to planning and designing cities accordingly. Here we describe the collective dynamics of New York City and surrounding areas as seen through the lens of Twitter usage. In particular, we observe and quantify the patterns that emerge naturally from the hourly activities in different areas of New York City, and discuss how they can be used to understand the urban areas. Using a dataset that includes more than 6 million geolocated Twitter messages we construct a movie of the geographic density of tweets. We observe the diurnal heartbeat of the NYC area. The largest scale dynamics are the waking and sleeping cycle and commuting from residential communities to office areas in Manhattan. Hourly dynamics reflect the interplay of commuting, work and leisure, including whether people are preoccupied with other activities or actively using Twitter. Differences between weekday and weekend dynamics point to changes in when people wake and sleep, and engage in social activities. We show that by measuring the average distances to the heart of the city one can quantify the weekly differences and the shift in behavior during weekends. We also identify locations and times of high Twitter activity that occur because of specific activities. These include early morning high levels of traffic as people arrive and wait at air transportation hubs, and on Sunday at the Meadowlands Sports Complex and Statue of Liberty. We analyze the role of particular individuals where they have large impacts on overall Twitter activity. Our analysis points to the opportunity to develop insight into both geographic social dynamics and attention through social media analysis.
Eclipse, an open source software project, acknowledges its donors by presenting donation badges in its issue tracking system Bugzilla. However, the rewarding effect of this strategy is currently unknown. We applied a framework of causal inference to investigate relative promptness of developer response to bug reports with donation badges compared with bug reports without the badges, and estimated that donation badges decreases developer response time by a median time of about two hours. The appearance of donation badges is appealing for both donors and organizers because of its practical, rewarding and yet inexpensive effect.
WhatsApp is a popular messaging app used by over a billion users around the globe. Due to this popularity, spam on WhatsApp is an important issue. Despite this, the distribution of spam via WhatsApp remains understudied by researchers, in part because of the end-to-end encryption offered by the platform. This paper addresses this gap by studying spam on a dataset of 2.6 million messages sent to 5,051 public WhatsApp groups in India over 300 days. First, we characterise spam content shared within public groups and find that nearly 1 in 10 messages is spam. We observe a wide selection of topics ranging from job ads to adult content, and find that spammers post both URLs and phone numbers to promote material. Second, we inspect the nature of spammers themselves. We find that spam is often disseminated by groups of phone numbers, and that spam messages are generally shared for longer duration than non-spam messages. Finally, we devise content and activity based detection algorithms that can counter spam.
With the global refugee crisis at a historic high, there is a growing need to assess the impact of refugee settlements on their hosting countries and surrounding environments. Because fires are an important land management practice in smallholder agriculture in sub-Saharan Africa, burned area (BA) mappings can help provide information about the impacts of land management practices on local environments. However, a lack of BA ground-truth data in much of sub-Saharan Africa limits the use of highly scalable deep learning (DL) techniques for such BA mappings. In this work, we propose a scalable transfer learning approach to study BA dynamics in areas with little to no ground-truth data such as the West Nile region in Northern Uganda. We train a deep learning model on BA ground-truth data in Portugal and propose the application of that model on refugee-hosting districts in West Nile between 2015 and 2020. By comparing the district-level BA dynamic with the wider West Nile region, we aim to add understanding of the land management impacts of refugee settlements on their surrounding environments.
Predictive models for clinical outcomes that are accurate on average in a patient population may underperform drastically for some subpopulations, potentially introducing or reinforcing inequities in care access and quality. Model training approaches that aim to maximize worst-case model performance across subpopulations, such as distributionally robust optimization (DRO), attempt to address this problem without introducing additional harms. We conduct a large-scale empirical study of DRO and several variations of standard learning procedures to identify approaches for model development and selection that consistently improve disaggregated and worst-case performance over subpopulations compared to standard approaches for learning predictive models from electronic health records data. In the course of our evaluation, we introduce an extension to DRO approaches that allows for specification of the metric used to assess worst-case performance. We conduct the analysis for models that predict in-hospital mortality, prolonged length of stay, and 30-day readmission for inpatient admissions, and predict in-hospital mortality using intensive care data. We find that, with relatively few exceptions, no approach performs better, for each patient subpopulation examined, than standard learning procedures using the entire training dataset. These results imply that when it is of interest to improve model performance for patient subpopulations beyond what can be achieved with standard practices, it may be necessary to do so via techniques that implicitly or explicitly increase the effective sample size.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا