Do you want to publish a course? Click here

The stochastic Fisher-KPP Equation with seed bank and on/off-branching-coalescing Brownian motion

199   0   0.0 ( 0 )
 Added by Florian Nie
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a new class of stochastic partial differential equations (SPDEs) with seed bank modeling the spread of a beneficial allele in a spatial population where individuals may switch between an active and a dormant state. Incorporating dormancy and the resulting seed bank leads to a two-type coupled system of equations with migration between both states. We first discuss existence and uniqueness of seed bank SPDEs and provide an equivalent delay representation that allows a clear interpretation of the age structure in the seed bank component. The delay representation will also be crucial in the proofs. Further, we show that the seed bank SPDEs give rise to an interesting class of on/off moment duals. In particular, in the special case of the F-KPP Equation with seed bank, the moment dual is given by an on/off-branching Brownian motion. This system differs from a classical branching Brownian motion in the sense that independently for all individuals, motion and branching may be switched off for an exponential amount of time after which they get switched on again. Here, as an application of our duality, we show that the spread of a beneficial allele, which in the classical F-KPP Equation, started from a Heaviside intial condition, evolves as a pulled traveling wave with speed $sqrt{2}$, is slowed down significantly in the corresponding seed bank F-KPP model. In fact, by computing bounds on the position of the rightmost particle in the dual on/off-branching Brownian motion, we obtain an upper bound for the speed of propagation of the beneficial allele given by $sqrt{sqrt{5}-1}approx 1.111$ under unit switching rates. This shows that seed banks will indeed slow down fitness waves and preserve genetic variability, in line with intuitive reasoning from population genetics and ecology.



rate research

Read More

89 - Florian Nie 2021
We investigate the compact interface property in a recently introduced variant of the stochastic heat equation that incorporates dormancy, or equivalently seed banks. There individuals can enter a dormant state during which they are no longer subject to spatial dispersal and genetic drift. This models a state of low metabolic activity as found in microbial species. Mathematically, one obtains a memory effect since mass accumulated by the active population will be retained for all times in the seed bank. This raises the question whether the introduction of a seed bank into the system leads to a qualitatively different behaviour of a possible interface. Here, we aim to show that nevertheless in the stochastic heat equation with seed bank compact interfaces are retained through all times in both the active and dormant population. We use duality and a comparison argument with partial functional differential equations to tackle technical difficulties that emerge due to the lack of the martingale property of our solutions which was crucial in the classical non seed bank case.
In this paper we prove that the spatially homogeneous Landau equation for Maxwellian molecules can be represented through the product of two elementary processes. The first one is the Brownian motion on the group of rotations. The second one is, conditionally on the first one, a Gaussian process. Using this representation, we establish sharp multi-scale upper and lower bounds for the transition density of the Landau equation, the multi-scale structure depending on the shape of the support of the initial condition.
We investigate the behaviour of the genealogy of a Wright-Fisher population model under the influence of a strong seed-bank effect. More precisely, we consider a simple seed-bank age distribution with two atoms, leading to either classical or long genealogical jumps (the latter modeling the effect of seed-dormancy). We assume that the length of these long jumps scales like a power $N^beta$ of the original population size $N$, thus giving rise to a `strong seed-bank effect. For a certain range of $beta$, we prove that the ancestral process of a sample of $n$ individuals converges under a non-classical time-scaling to Kingmans $n-$coalescent. Further, for a wider range of parameters, we analyze the time to the most recent common ancestor of two individuals analytically and by simulation.
We consider branching Brownian motion on the real line with absorption at zero, in which particles move according to independent Brownian motions with the critical drift of $-sqrt{2}$. Kesten (1978) showed that almost surely this process eventually dies out. Here we obtain upper and lower bounds on the probability that the process survives until some large time $t$. These bounds improve upon results of Kesten (1978), and partially confirm nonrigorous predictions of Derrida and Simon (2007).
We consider critical branching Brownian motion with absorption, in which there is initially a single particle at $x > 0$, particles move according to independent one-dimensional Brownian motions with the critical drift of $-sqrt{2}$, and particles are absorbed when they reach zero. Here we obtain asymptotic results concerning the behavior of the process before the extinction time, as the position $x$ of the initial particle tends to infinity. We estimate the number of particles in the system at a given time and the position of the right-most particle. We also obtain asymptotic results for the configuration of particles at a typical time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا