Do you want to publish a course? Click here

Phase behavior under a non-centrosymmetric interaction: shifted charge colloids investigated by Monte Carlo simulation

143   0   0.0 ( 0 )
 Added by Xin Li
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using Monte Carlo simulations, we investigate the structural characteristics of an interacting hard sphere system with shifted charge to elucidate the effect of the non-centrosymmetric interaction on its phase behavior. Two different phase transitions are identified for this model system. Upon increasing the volume fraction, an abrupt liquid-to-crystal transition first occurs at a significantly lower volume fraction in comparison to that of the centro-charged system. This is due to the stronger effective inter-particle repulsion caused by the additional charge anisotropy. Moreover, within the crystal state at higher volume fraction, the system further undergoes a continuous disorder-to-order transition with respect to the charge orientation. Detailed analyses in this work disclose the nature of these transitions, and orientation fluctuation may cause non-centrosymmetric unit cells. The dependence of crystal formation and orientational ordering on temperature was also examined. These findings indicate that the non-centrosymmetric interaction in this work results in additional freedoms to fine-tune the phase diagram and increase the functionalities of materials. Moreover, these model studies are essential to advance our future understanding regarding the fundamental physiochemical properties of novel Janus colloidal particles and protein crystallization conditions.



rate research

Read More

The principles behind the computation of protein-ligand binding free energies by Monte Carlo integration are described in detail. The simulation provides gas-phase binding free energies that can be converted to aqueous energies by solvation corrections. The direct integration simulation has several characteristics beneficial to free-energy calculations. One is that the number of parameters that must be set for the simulation is small and can be determined objectively, making the outcome more deterministic, with respect to choice of input conditions, as compared to perturbation methods. Second, the simulation is free from assumptions about the starting pose or nature of the binding site. A final benefit is that binding free energies are a direct outcome of the simulation, and little processing is required to determine them. The well-studied T4 lysozyme experimental free energy data and crystal structures were used to evaluate the method.
361 - N.B. Wilding , A.D. Bruce 2000
We describe a Monte Carlo procedure which allows sampling of the disjoint configuration spaces associated with crystalline and fluid phases, within a single simulation. The method utilises biased sampling techniques to enhance the probabilities of gateway states (in each phase) which are such that a global switch (to the other phase) can be implemented. Equilibrium freezing-point parameters can be determined directly; statistical uncertainties prescribed transparently; and finite-size effects quantified systematically. The method is potentially quite general; we apply it to the freezing of hard spheres.
We propose the use of preconditioning in FCIQMC which, in combination with perturbative estimators, greatly increases the efficiency of the algorithm. The use of preconditioning allows a time step close to unity to be used (without time-step errors), provided that multiple spawning attempts are made per walker. We show that this approach substantially reduces statistical noise on perturbative corrections to initiator error, which improve the accuracy of FCIQMC but which can suffer from significant noise in the original scheme. Therefore, the use of preconditioning and perturbatively-corrected estimators in combination leads to a significantly more efficient algorithm. In addition, a simpler approach to sampling variational and perturbative estimators in FCIQMC is presented, which also allows the variance of the energy to be calculated. These developments are investigated and applied to benzene (30e,108o), an example where accurate treatment is not possible with the original method.
90 - Ji Qiang 2020
Monte Carlo simulations are widely used in many areas including particle accelerators. In this lecture, after a short introduction and reviewing of some statistical backgrounds, we will discuss methods such as direct inversion, rejection method, and Markov chain Monte Carlo to sample a probability distribution function, and methods for variance reduction to evaluate numerical integrals using the Monte Carlo simulation. We will also briefly introduce the quasi-Monte Carlo sampling at the end of this lecture.
Stabilization and dispersion of electrical charge by colloids in non-polar media, such as nano-particles or inverse micelles, is significant for a variety of chemical and technological applications, ranging from drug delivery to e-ink. Many applications require knowledge about concentrations near the solid|liquid interface and the bulk, particularly in media where colloids exhibit spontaneous charging properties. By modification of the mean field equations to include the finite size effects that are typical in concentrated electrolytes along with disproportionation kinetics, and by considering high potentials, it is possible to evaluate the width of the condensed double layers near planar electrodes and the bulk concentrations of colloids at steady state. These quantities also provide an estimate of the minimum initial colloid concentration that is required to support electroneutrality in the dispersion bulk, and thus provide insights into the quasi-steady state currents that have been observed in inverse micellar media.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا