No Arabic abstract
We describe a Monte Carlo procedure which allows sampling of the disjoint configuration spaces associated with crystalline and fluid phases, within a single simulation. The method utilises biased sampling techniques to enhance the probabilities of gateway states (in each phase) which are such that a global switch (to the other phase) can be implemented. Equilibrium freezing-point parameters can be determined directly; statistical uncertainties prescribed transparently; and finite-size effects quantified systematically. The method is potentially quite general; we apply it to the freezing of hard spheres.
We present a Monte Carlo method for the direct evaluation of the difference between the free energies of two crystal structures. The method is built on a lattice-switch transformation that maps a configuration of one structure onto a candidate configuration of the other by `switching one set of lattice vectors for the other, while keeping the displacements with respect to the lattice sites constant. The sampling of the displacement configurations is biased, multicanonically, to favor paths leading to `gateway arrangements for which the Monte Carlo switch to the candidate configuration will be accepted. The configurations of both structures can then be efficiently sampled in a single process, and the difference between their free energies evaluated from their measured probabilities. We explore and exploit the method in the context of extensive studies of systems of hard spheres. We show that the efficiency of the method is controlled by the extent to which the switch conserves correlated microstructure. We also show how, microscopically, the procedure works: the system finds gateway arrangements which fulfill the sampling bias intelligently. We establish, with high precision, the differences between the free energies of the two close packed structures (fcc and hcp) in both the constant density and the constant pressure ensembles.
We show how to generalize the Lattice Switch Monte Carlo method to calculate the phase diagram of a binary system. A global coordinate transformation is combined with a modification of particle diameters, enabling the multi-component system in question to be explored and directly compared to a suitable reference state in a single Monte Carlo simulation. We use the method to evaluate the free energies of binary hard sphere crystals. Calculations at moderate size ratios, alpha=0.58 and alpha=0.73, are in agreement with previous results, and confirm AB2 and AB13 as stable structures. We also find that the AB(CsCl) structure is not entropically stable at the size ratio and volume at which it has been reported experimentally, and therefore that those observations cannot be explained by packing effects alone.
Effective Casimir forces induced by thermal fluctuations in the vicinity of bulk critical points are studied by means of Monte Carlo simulations in three-dimensional systems for film geometries and within the experimentally relevant Ising and XY universality classes. Several surface universality classes of the confining surfaces are considered, some of which are relevant for recent experiments. A novel approach introduced previously EPL 80, 60009 (2007), based inter alia on an integration scheme of free energy differences, is utilized to compute the universal scaling functions of the critical Casimir forces in the critical range of temperatures above and below the bulk critical temperature. The resulting predictions are compared with corresponding experimental data for wetting films of fluids and with available theoretical results.
We present a method for the direct evaluation of the difference between the free energies of two crystalline structures, of different symmetry. The method rests on a Monte Carlo procedure which allows one to sample along a path, through atomic-displacement-space, leading from one structure to the other by way of an intervening transformation that switches one set of lattice vectors for another. The configurations of both structures can thus be sampled within a single Monte Carlo process, and the difference between their free energies evaluated directly from the ratio of the measured probabilities of each. The method is used to determine the difference between the free energies of the fcc and hcp crystalline phases of a system of hard spheres.
The hard-disk problem, the statics and the dynamics of equal two-dimensional hard spheres in a periodic box, has had a profound influence on statistical and computational physics. Markov-chain Monte Carlo and molecular dynamics were first discussed for this model. Here we reformulate hard-disk Monte Carlo algorithms in terms of another classic problem, namely the sampling from a polytope. Local Markov-chain Monte Carlo, as proposed by Metropolis et al. in 1953, appears as a sequence of random walks in high-dimensional polytopes, while the moves of the more powerful event-chain algorithm correspond to molecular dynamics evolution. We determine the convergence properties of Monte Carlo methods in a special invariant polytope associated with hard-disk configurations, and the implications for convergence of hard-disk sampling. Finally, we discuss parallelization strategies for event-chain Monte Carlo and present results for a multicore implementation.