No Arabic abstract
We consider the approximations behind the typical mean-field model derived for a class of systems made up of type II excitable units influenced by noise and coupling delays. The formulation of the two approximations, referred to as the Gaussian and the quasi-independence approximation, as well as the fashion in which their validity is verified, are adapted to reflect the essential properties of the underlying system. It is demonstrated that the failure of the mean-field model associated with the breakdown of the quasi-independence approximation can be predicted by the noise-induced bistability in the dynamics of the mean-field system. As for the Gaussian approximation, its violation is related to the increase of noise intensity, but the actual condition for failure can be cast in qualitative, rather than quantitative terms. We also discuss how the fulfilment of the mean-field approximations affects the statistics of the first return times for the local and global variables, further exploring the link between the fulfilment of the quasi-independence approximation and certain forms of synchronization between the individual units.
The analysis on stability and bifurcations in the macroscopic dynamics exhibited by the system of two coupled large populations comprised of $N$ stochastic excitable units each is performed by studying an approximate system, obtained by replacing each population with the corresponding mean-field model. In the exact system, one has the units within an ensemble communicating via the time-delayed linear couplings, whereas the inter-ensemble terms involve the nonlinear time-delayed interaction mediated by the appropriate global variables. The aim is to demonstrate that the bifurcations affecting the stability of the stationary state of the original system, governed by a set of 4N stochastic delay-differential equations for the microscopic dynamics, can accurately be reproduced by a flow containing just four deterministic delay-differential equations which describe the evolution of the mean-field based variables. In particular, the considered issues include determining the parameter domains where the stationary state is stable, the scenarios for the onset and the time-delay induced suppression of the collective mode, as well as the parameter domains admitting bistability between the equilibrium and the oscillatory state. We show how analytically tractable bifurcations occurring in the approximate model can be used to identify the characteristic mechanisms by which the stationary state is destabilized under different system configurations, like those with symmetrical or asymmetrical inter-population couplings.
We study the nonlinear dynamics of two delay-coupled neural systems each modelled by excitable dynamics of FitzHugh-Nagumo type and demonstrate that bistability between the stable fixed point and limit cycle oscillations occurs for sufficiently large delay times and coupling strength. As the mechanism for these delay-induced oscillations we identify a saddle-node bifurcation of limit cycles.
We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investigate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.
Low dimensional dynamics of large networks is the focus of many theoretical works, but controlled laboratory experiments are comparatively very few. Here, we discuss experimental observations on a mean-field coupled network of hundreds of semiconductor lasers, which collectively display effectively low-dimensional mixed mode oscillations and chaotic spiking typical of slow-fast systems. We demonstrate that such a reduced dimensionality originates from the slow-fast nature of the system and of the existence of a critical manifold of the network where most of the dynamics takes place. Experimental measurement of the bifurcation parameter for different network sizes corroborate the theory.
We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. We focus on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone. Comparing the synchronization properties of static and fluctuating networks, we find that random network alternations can enhance the synchronizability. Synchronized states appear to be maximally stable when fluctuations are much faster than the time-delay, even when the instantaneous state of the network does not allow synchronization. This enhancing effect disappears for very slow fluctuations. For fluctuation time scales of the order of the time-delay, a desynchronizing resonance is reported. Moreover, we observe characteristic oscillations, with a periodicity related to the coupling delay, as the system approaches or drifts away from the synchronized state.