Do you want to publish a course? Click here

Dynamics of delay-coupled excitable neural systems

117   0   0.0 ( 0 )
 Added by Markus Dahlem
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the nonlinear dynamics of two delay-coupled neural systems each modelled by excitable dynamics of FitzHugh-Nagumo type and demonstrate that bistability between the stable fixed point and limit cycle oscillations occurs for sufficiently large delay times and coupling strength. As the mechanism for these delay-induced oscillations we identify a saddle-node bifurcation of limit cycles.



rate research

Read More

We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investigate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.
129 - Gautam C. Sethia , Abhijit Sen , 2008
We investigate chimera states in a ring of identical phase oscillators coupled in a time-delayed and spatially non-local fashion. We find novel clustered chimera states that have spatially distributed phase coherence separated by incoherence with adjacent coherent regions in anti-phase. The existence of such time-delay induced phase clustering is further supported through solutions of a generalized functional self-consistency equation of the mean field. Our results highlight an additional mechanism for cluster formation that may find wider practical applications.
In this paper we present the results of parallel numerical computations of the long-term dynamics of linked vortex filaments in a three-dimensional FitzHugh-Nagumo excitable medium. In particular, we study all torus links with no more than 12 crossings and identify a timescale over which the dynamics is regular in the sense that each link is well-described by a spinning rigid conformation of fixed size that propagates at constant speed along the axis of rotation. We compute the properties of these links and demonstrate that they have a simple dependence on the crossing number of the link for a fixed number of link components. Furthermore, we find that instabilities that exist over longer timescales in the bulk can be removed by boundary interactions that yield stable torus links which settle snugly at the medium boundary. The Borromean rings are used as an example of a non-torus link to demonstrate both the irregular tumbling dynamics that arises in the bulk and its suppression by a tight confining medium. Finally, we investigate the collision of torus links and reveal that this produces a complicated wrestling motion where one torus link can eventually dominate over the other by pushing it into the boundary of the medium.
Neural networks are currently transforming the field of computer algorithms, yet their emulation on current computing substrates is highly inefficient. Reservoir computing was successfully implemented on a large variety of substrates and gave new insight in overcoming this implementation bottleneck. Despite its success, the approach lags behind the state of the art in deep learning. We therefore extend time-delay reservoirs to deep networks and demonstrate that these conceptually correspond to deep convolutional neural networks. Convolution is intrinsically realized on a substrate level by generic drive-response properties of dynamical systems. The resulting novelty is avoiding vector-matrix products between layers, which cause low efficiency in todays substrates. Compared to singleton time-delay reservoirs, our deep network achieves accuracy improvements by at least an order of magnitude in Mackey-Glass and Lorenz timeseries prediction.
We consider the approximations behind the typical mean-field model derived for a class of systems made up of type II excitable units influenced by noise and coupling delays. The formulation of the two approximations, referred to as the Gaussian and the quasi-independence approximation, as well as the fashion in which their validity is verified, are adapted to reflect the essential properties of the underlying system. It is demonstrated that the failure of the mean-field model associated with the breakdown of the quasi-independence approximation can be predicted by the noise-induced bistability in the dynamics of the mean-field system. As for the Gaussian approximation, its violation is related to the increase of noise intensity, but the actual condition for failure can be cast in qualitative, rather than quantitative terms. We also discuss how the fulfilment of the mean-field approximations affects the statistics of the first return times for the local and global variables, further exploring the link between the fulfilment of the quasi-independence approximation and certain forms of synchronization between the individual units.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا