Do you want to publish a course? Click here

Effective low-dimensional dynamics of a mean-field coupled network of slow-fast spiking lasers

62   0   0.0 ( 0 )
 Added by Stephane Barland
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low dimensional dynamics of large networks is the focus of many theoretical works, but controlled laboratory experiments are comparatively very few. Here, we discuss experimental observations on a mean-field coupled network of hundreds of semiconductor lasers, which collectively display effectively low-dimensional mixed mode oscillations and chaotic spiking typical of slow-fast systems. We demonstrate that such a reduced dimensionality originates from the slow-fast nature of the system and of the existence of a critical manifold of the network where most of the dynamics takes place. Experimental measurement of the bifurcation parameter for different network sizes corroborate the theory.



rate research

Read More

Many studies of synchronization properties of coupled oscillators, based on the classical Kuramoto approach, focus on ensembles coupled via a mean field. Here we introduce a setup of Kuramoto-type phase oscillators coupled via two mean fields. We derive stability properties of the incoherent state and find traveling wave solutions with different locking patterns; stability properties of these waves are found numerically. Mostly nontrivial states appear when the two fields compete, i.e. one tends to synchronize oscillators while the other one desynchronizes them. Here we identify normal branches which bifurcate from the incoherent state in a usual way, and anomalous branches, appearance of which cannot be described as a bifurcation. Furthermore, hybrid branches combining properties of both are described. In the situations where no stable traveling wave exists, modulated quasiperiodic in time dynamics is observed. Our results indicate that a competition between two coupling channels can lead to a complex system behavior, providing a potential generalized framework for understanding of complex phenomena in natural oscillatory systems.
The analysis on stability and bifurcations in the macroscopic dynamics exhibited by the system of two coupled large populations comprised of $N$ stochastic excitable units each is performed by studying an approximate system, obtained by replacing each population with the corresponding mean-field model. In the exact system, one has the units within an ensemble communicating via the time-delayed linear couplings, whereas the inter-ensemble terms involve the nonlinear time-delayed interaction mediated by the appropriate global variables. The aim is to demonstrate that the bifurcations affecting the stability of the stationary state of the original system, governed by a set of 4N stochastic delay-differential equations for the microscopic dynamics, can accurately be reproduced by a flow containing just four deterministic delay-differential equations which describe the evolution of the mean-field based variables. In particular, the considered issues include determining the parameter domains where the stationary state is stable, the scenarios for the onset and the time-delay induced suppression of the collective mode, as well as the parameter domains admitting bistability between the equilibrium and the oscillatory state. We show how analytically tractable bifurcations occurring in the approximate model can be used to identify the characteristic mechanisms by which the stationary state is destabilized under different system configurations, like those with symmetrical or asymmetrical inter-population couplings.
We explore the coherent dynamics in a small network of three coupled parametric oscillators and demonstrate the effect of frustration on the persistent beating between them. Since a single-mode parametric oscillator represents an analog of a classical Ising spin, networks of coupled parametric oscillators are considered as simulators of Ising spin models, aiming to efficiently calculate the ground state of an Ising network - a computationally hard problem. However, the coherent dynamics of coupled parametric oscillators can be considerably richer than that of Ising spins, depending on the nature of the coupling between them (energy preserving or dissipative), as was recently shown for two coupled parametric oscillators. In particular, when the energy-preserving coupling is dominant, the system displays everlasting coherent beats, transcending the Ising description. Here, we extend these findings to three coupled parametric oscillators, focusing in particular on the effect of frustration of the dissipative coupling. We theoretically analyze the dynamics using coupled nonlinear Mathieus equations, and corroborate our theoretical findings by a numerical simulation that closely mimics the dynamics of the system in an actual experiment. Our main finding is that frustration drastically modifies the dynamics. While in the absence of frustration the system is analogous to the two-oscillator case, frustration reverses the role of the coupling completely, and beats are found for small energy-preserving couplings.
We theoretically study chaos synchronization of two lasers which are delay-coupled via an active or a passive relay. While the lasers are synchronized, their dynamics is identical to a single laser with delayed feedback for a passive relay and identical to two delay-coupled lasers for an active relay. Depending on the coupling parameters the system exhibits bubbling, i.e., noise-induced desynchronization, or on-off intermittency. We associate the desynchronization dynamics in the coherence collapse and low frequency fluctuation regimes with the transverse instability of some of the compound cavitys antimodes. Finally, we demonstrate how, by using an active relay, bubbling can be suppressed.
We consider pulse-coupled Leaky Integrate-and-Fire neural networks with randomly distributed synaptic couplings. This random dilution induces fluctuations in the evolution of the macroscopic variables and deterministic chaos at the microscopic level. Our main aim is to mimic the effect of the dilution as a noise source acting on the dynamics of a globally coupled non-chaotic system. Indeed, the evolution of a diluted neural network can be well approximated as a fully pulse coupled network, where each neuron is driven by a mean synaptic current plus additive noise. These terms represent the average and the fluctuations of the synaptic currents acting on the single neurons in the diluted system. The main microscopic and macroscopic dynamical features can be retrieved with this stochastic approximation. Furthermore, the microscopic stability of the diluted network can be also reproduced, as demonstrated from the almost coincidence of the measured Lyapunov exponents in the deterministic and stochastic cases for an ample range of system sizes. Our results strongly suggest that the fluctuations in the synaptic currents are responsible for the emergence of chaos in this class of pulse coupled networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا