Do you want to publish a course? Click here

The magnetic phase diagram of underdoped YBa2Cu3Oy inferred from torque magnetization and thermal conductivity

126   0   0.0 ( 0 )
 Added by N. P. Ong
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Strong evidence for charge-density correlation in the underdoped phase of the cuprate YBa2Cu3Oy was obtained by nuclear magnetic resonance (NMR) and resonant x-ray scatter- ing. The fluctuations were found to be enhanced in strong magnetic fields. Recently, 3D (three dimensional) charge-density wave (CDW) formation with long-range order (LRO) was observed by x-ray diffraction in H >15 T. To elucidate how the CDW transition impacts the pair condensate, we have used torque magnetization to 45 T and thermal conductivity $kappa_{xx}$ to construct the magnetic phase diagram in untwinned crystals with hole density p = 0.11. We show that the 3D CDW transitions appear as sharp features in the susceptibility and $kappa_{xx}$ at the fields HK and Hp, which define phase boundaries in agreement with spectroscopic techniques. From measurements of the melting field Hm(T) of the vortex solid, we obtain evidence for two vortex solid states below 8 K. At 0.5 K, the pair condensate appears to adjust to the 3D CDW by a sharp transition at 24 T between two vortex solids with very different shear moduli. At even higher H (42 T) the second vortex solid melts to a vortex liquid which survives to fields well above 45 T. de Haas-van Alphen oscillations appear at fields 24-28 T, below the lower bound for the upper critical field Hc2.



rate research

Read More

We have measured temperature and magnetic field dependences of the thermal conductivity along the c-axis, kc, and that along the [110] direction, k110, of CuB2O4 single crystals in zero field and magnetic fields along the c-axis and along the [110] direction. It has been found that the thermal conductivity is nearly isotropic and very large in zero field and that the thermal conductivity due to phonons is dominant in CuB2O4. The temperature and field dependences of kc and k110 have markedly changed at phase boundaries in the magnetic phase diagram, which has been understood to be due to the change of the mean free path of phonons caused by the change of the phonon-spin scattering rate at the phase boundaries. It has been concluded that thermal conductivity measurements are very effective for detecting magnetic phase boundaries.
The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic field plane illuminates key issues in understanding the physics of these materials. At low temperature, the superconducting state gives way to a long-range charge order with increasing magnetic field; both the orders coexist in a small intermediate region. The charge order transition is strikingly insensitive to temperature, and quickly reaches a transition temperature close to the zero-field superconducting $T_c$. We argue that such a transition along with the presence of the coexisting phase cannot be described simply by a competing orders formalism. We demonstrate that for some range of parameters there is an enlarged symmetry of the strongly coupled charge and superconducting orders in the system depending on their relative masses and the coupling strength of the two orders. We establish that this sharp switch from the superconducting phase to the charge order phase can be understood in the framework of a composite SU(2) order parameter comprising the charge and superconducting orders. Finally, we illustrate that there is a possibility of the coexisting phase of the competing charge and superconducting orders only when the SU(2) symmetry between them is weakly broken due to biquadratic terms in the free energy. The relation of this sharp transition to the proximity to the pseudogap quantum critical doping is also discussed.
Vortices in a type-II superconductor form a lattice structure that melts when the thermal displacement of the vortices is an appreciable fraction of the distance between vortices. In an anisotropic high-Tc superconductor, such as YBa2Cu3Oy, the magnetic field value where this melting occurs can be much lower than the mean-field critical field Hc2. We examine this melting transition in YBa2Cu3Oy with oxygen content y from 6.45 to 6.92, and fit the data to a theory of vortex-lattice melting. The quality of the fits indicates that the transition to a resistive state is indeed the vortex lattice melting transition, with the shape of the melting curves being consistent with the known change in penetration depth anisotropy from underdoped to optimally doped YBa2Cu3Oy. From the fits we extract Hc2(T = 0) as a function of hole doping. The unusual doping dependence of Hc2(T =0) points to some form of electronic order competing with superconductivity around 0.12 hole doping.
To explore the doping dependence of the recently discovered charge density wave (CDW) order in YBa2Cu3Oy, we present a bulk-sensitive high-energy x-ray study for several oxygen concentrations, including strongly underdoped YBa2Cu3O6.44. Combined with previous data around the so-called 1/8 doping, we show that bulk CDW order exists at least for hole concentrations (p) in the CuO2 planes of 0.078 <~ p <~ 0.132. This implies that CDW order exists in close vicinity to the quantum critical point for spin density wave (SDW) order. In contrast to the pseudogap temperature T*, the onset temperature of CDW order decreases with underdoping to T_CDW ~ 90K in YBa2Cu3O6.44. Together with a weakened order parameter this suggests a competition between CDW and SDW orders. In addition, the CDW order in YBa2Cu3O6.44 shows the same type of competition with superconductivity as a function of temperature and magnetic field as samples closer to p = 1/8. At low p the CDW incommensurability continues the previously reported linear increasing trend with underdoping. In the entire doping range the in-plane correlation length of the CDW order in b-axis direction depends only very weakly on the hole concentration, and appears independent of the type and correlation length of the oxygen-chain order. The onset temperature of the CDW order is remarkably close to a temperature T^dagger that marks the maximum of 1/(T_1T) in planar 63^Cu NQR/NMR experiments, potentially indicating a response of the spin dynamics to the formation of the CDW. Our discussion of these findings includes a detailed comparison to the charge stripe order in La2-xBaxCuO4.
The recent detection of charge-density modulations in YBa2Cu3Oy and other cuprate superconductors raises new questions about the normal state of underdoped cuprates. In one class of theories, the modulations are intertwined with pairing in a dual state, expected to persist up to high magnetic fields as a vortex liquid. In support of such a state, specific heat and magnetisation data on YBa2Cu3Oy have been interpreted in terms of a vortex liquid persisting above the vortex-melting field Hvs at T = 0. Here we report high-field measurements of the electrical and thermal Hall conductivities in YBa2Cu3O6.54 that allow us to probe the Wiedemann-Franz law, a sensitive test of the presence of superconductivity in a metal. In the T = 0 limit, we find that the law is satisfied for fields immediately above Hvs. This rules out the existence of a vortex liquid and it places strict constraints on the nature of the normal state in underdoped cuprates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا