Do you want to publish a course? Click here

Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy

796   0   0.0 ( 0 )
 Added by Markus Huecker
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

To explore the doping dependence of the recently discovered charge density wave (CDW) order in YBa2Cu3Oy, we present a bulk-sensitive high-energy x-ray study for several oxygen concentrations, including strongly underdoped YBa2Cu3O6.44. Combined with previous data around the so-called 1/8 doping, we show that bulk CDW order exists at least for hole concentrations (p) in the CuO2 planes of 0.078 <~ p <~ 0.132. This implies that CDW order exists in close vicinity to the quantum critical point for spin density wave (SDW) order. In contrast to the pseudogap temperature T*, the onset temperature of CDW order decreases with underdoping to T_CDW ~ 90K in YBa2Cu3O6.44. Together with a weakened order parameter this suggests a competition between CDW and SDW orders. In addition, the CDW order in YBa2Cu3O6.44 shows the same type of competition with superconductivity as a function of temperature and magnetic field as samples closer to p = 1/8. At low p the CDW incommensurability continues the previously reported linear increasing trend with underdoping. In the entire doping range the in-plane correlation length of the CDW order in b-axis direction depends only very weakly on the hole concentration, and appears independent of the type and correlation length of the oxygen-chain order. The onset temperature of the CDW order is remarkably close to a temperature T^dagger that marks the maximum of 1/(T_1T) in planar 63^Cu NQR/NMR experiments, potentially indicating a response of the spin dynamics to the formation of the CDW. Our discussion of these findings includes a detailed comparison to the charge stripe order in La2-xBaxCuO4.



rate research

Read More

Vortices in a type-II superconductor form a lattice structure that melts when the thermal displacement of the vortices is an appreciable fraction of the distance between vortices. In an anisotropic high-Tc superconductor, such as YBa2Cu3Oy, the magnetic field value where this melting occurs can be much lower than the mean-field critical field Hc2. We examine this melting transition in YBa2Cu3Oy with oxygen content y from 6.45 to 6.92, and fit the data to a theory of vortex-lattice melting. The quality of the fits indicates that the transition to a resistive state is indeed the vortex lattice melting transition, with the shape of the melting curves being consistent with the known change in penetration depth anisotropy from underdoped to optimally doped YBa2Cu3Oy. From the fits we extract Hc2(T = 0) as a function of hole doping. The unusual doping dependence of Hc2(T =0) points to some form of electronic order competing with superconductivity around 0.12 hole doping.
71 - R. Zhou , M. Hirata , T. Wu 2017
The value of the upper critical field Hc2, a fundamental characteristic of the superconducting state, has been subject to strong controversy in high-Tc copper-oxides. Since the issue has been tackled almost exclusively by macroscopic techniques so far, there is a clear need for local-probe measurements. Here, we use 17O NMR to measure the spin susceptibility $chi_{spin}$ of the CuO2 planes at low temperature in charge ordered YBa2Cu3Oy. We find that $chi_{spin}$ increases (most likely linearly) with magnetic field H and saturates above field values ranging from 20 to 40 T. This result is consistent with Hc2 values claimed by G. Grissonnanche et al. [Nat. Commun. 5, 3280 (2014)] and with the interpretation that the charge-density-wave (CDW) reduces Hc2 in underdoped YBa2Cu3Oy. Furthermore, the absence of marked deviation in $chi_{spin}(H)$ at the onset of long-range CDW order indicates that this Hc2 reduction and the Fermi-surface reconstruction are primarily rooted in the short-range CDW order already present in zero field, not in the field-induced long-range CDWorder. Above Hc2, the relatively low values of $chi_{spin}$ at T=2 K show that the pseudogap is a ground-state property, independent of the superconducting gap.
379 - J. Dong , H. J. Zhang , G. Xu 2008
The interplay between different ordered phases, such as superconducting, charge or spin ordered phases, is of central interest in condensed matter physics. The very recent discovery of superconductivity with a remarkable T$_c$= 26 K in Fe-based oxypnictide La(O$_{1-x}$F$_x$)FeAs is a surprise to the scientific communitycite{Kamihara08}. The pure LaOFeAs itself is not superconducting but shows an anomaly near 150 K in both resistivity and dc magnetic susceptibility. Here we provide combined experimental and theoretical evidences showing that the anomaly is caused by the spin-density-wave (SDW) instability, and electron-doping by F suppresses the SDW instability and recovers the superconductivity. Therefore, the La(O$_{1-x}$F$_x$)FeAs offers an exciting new system showing competing orders in layered compounds.
Strongly interacting electrons in solid-state systems often display tendency towards multiple broken symmetries in the ground state. The complex interplay between different order parameters can give rise to a rich phase diagram. Here, we report on the identification of intertwined phases with broken rotational symmetry in magic-angle twisted bilayer graphene (TBG). Using transverse resistance measurements, we find a strongly anisotropic phase located in a wedge above the underdoped region of the superconducting dome. Upon crossing the superconducting dome, a reduction of the critical temperature is observed, similar to the behavior of certain cuprate superconductors. Furthermore, the superconducting state exhibits a anisotropic response to an directional-dependent in-plane magnetic field, revealing a nematic pairing state across the entire superconducting dome. These results indicate that nematic fluctuations might play an important role in the low-temperature phases of magic-angle TBG, and pave the way for using highly-tunable moir{e} superlattices to investigate intertwined phases in quantum materials.
Muon spin rotation and relaxation studies have been performed on a 111 family of iron-based superconductors NaFe_1-xNi_xAs. Static magnetic order was characterized by obtaining the temperature and doping dependences of the local ordered magnetic moment size and the volume fraction of the magnetically ordered regions. For x = 0 and 0.4 %, a transition to a nearly-homogeneous long range magnetically ordered state is observed, while for higher x than 0.4 % magnetic order becomes more disordered and is completely suppressed for x = 1.5 %. The magnetic volume fraction continuously decreases with increasing x. The combination of magnetic and superconducting volumes implies that a spatially-overlapping coexistence of magnetism and superconductivity spans a large region of the T-x phase diagram for NaFe_1-xNi_xAs . A strong reduction of both the ordered moment size and the volume fraction is observed below the superconducting T_C for x = 0.6, 1.0, and 1.3 %, in contrast to other iron pnictides in which one of these two parameters exhibits a reduction below TC, but not both. The suppression of magnetic order is further enhanced with increased Ni doping, leading to a reentrant non-magnetic state below T_C for x = 1.3 %. The reentrant behavior indicates an interplay between antiferromagnetism and superconductivity involving competition for the same electrons. These observations are consistent with the sign-changing s-wave superconducting state, which is expected to appear on the verge of microscopic coexistence and phase separation with magnetism. We also present a universal linear relationship between the local ordered moment size and the antiferromagnetic ordering temperature TN across a variety of iron-based superconductors. We argue that this linear relationship is consistent with an itinerant-electron approach, in which Fermi surface nesting drives antiferromagnetic ordering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا