Do you want to publish a course? Click here

Topological gauge fixing II: a homotopy formulation

138   0   0.0 ( 0 )
 Added by Frank Thuillier
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit the implementation of the metric-independent Fock-Schwinger gauge in the abelian Chern-Simons field theory defined in ${mathbb{R}}^3$ by means of a homotopy condition. This leads to the lagrangian $F wedge hF$ in terms of curvatures $F$ and of the Poincare homotopy operator $h$. The corresponding field theory provides the same link invariants as the abelian Chern-Simons theory. Incidentally the part of the gauge field propagator which yields the link invariants of the Chern-Simons theory in the Fock-Schwinger gauge is recovered without any computation.



rate research

Read More

We implement the metric-independent Fock-Schwinger gauge in the abelian quantum Chern-Simons field theory defined in ${mathbb R}^3$. The expressions of the various components of the propagator are determined. Although the gauge field propagator differs from the Gauss linking density, we prove that its integral along two oriented knots is equal to the linking number.
74 - Frank Ferrari 2020
We formulate the most general gravitational models with constant negative curvature (hyperbolic gravity) on an arbitrary orientable two-dimensional surface of genus $g$ with $b$ circle boundaries in terms of a $text{PSL}(2,mathbb R)_partial$ gauge theory of flat connections. This includes the usual JT gravity with Dirichlet boundary conditions for the dilaton field as a special case. A key ingredient is to realize that the correct gauge group is not the full $text{PSL}(2,mathbb R)$, but a subgroup $text{PSL}(2,mathbb R)_{partial}$ of gauge transformations that go to $text{U}(1)$ local rotations on the boundary. We find four possible classes of boundary conditions, with associated boundary terms, that can be applied to each boundary component independently. Class I has five inequivalent variants, corresponding to geodesic boundaries of fixed length, cusps, conical defects of fixed angle or large cylinder-shaped asymptotic regions with boundaries of fixed lengths and extrinsic curvatures one or greater than one. Class II precisely reproduces the usual JT gravity. In particular, the crucial extrinsic curvature boundary term of the usual second order formulation is automatically generated by the gauge theory boundary term. Class III is a more exotic possibility for which the integrated extrinsic curvature is fixed on the boundary. Class IV is the Legendre transform of class II; the constraint of fixed length is replaced by a boundary cosmological constant term.
We continue our study of effective field theory via homotopy transfer of $L_infty$-algebras, and apply it to tree-level non-Wilsonian effective actions of the kind discussed by Sen in which the modes integrated out are comparable in mass to the modes that are kept. We focus on the construction of effective actions for string states at fixed levels and in particular on the construction of weakly constrained double field theory. With these examples in mind, we discuss closed string theory on toroidal backgrounds and resolve some subtle issues involving vertex operators, including the proper form of cocycle factors and of the reflector state. This resolves outstanding issues concerning the construction of covariant closed string field theory on toroidal backgrounds. The weakly constrained double field theory is formally obtained from closed string field theory on a toroidal background by integrating out all but the doubly massless states and homotopy transfer then gives a prescription for determining the theorys vertices and symmetries. We also discuss consistent truncation in the context of homotopy transfer.
We study the Gribov problem in four-dimensional topological Yang-Mills theories following the Baulieu-Singer approach in the (anti-)self-dual Landau gauges. This is a gauge-fixed approach that allows to recover the topological spectrum, as first constructed by Witten, by means of an equivariant (or constrained) BRST cohomology. As standard gauge-fixed Yang-Mills theories suffer from the gauge copy (Gribov) ambiguity, one might wonder if and how this has repercussions for this analysis. The resolution of the small (infinitesimal) gauge copies, in general, affects the dynamics of the underlying theory. In particular, treating the Gribov problem for the standard Landau gauge condition in non-topological Yang-Mills theories strongly affects the dynamics of the theory in the infrared. In the current paper, although the theory is investigated with the same gauge condition, the effects of the copies turn out to be completely different. In other words: in both cases, the copies are there, but the effects are very different. As suggested by the tree-level exactness of the topological model in this gauge choice, the Gribov copies are shown to be inoffensive at the quantum level. To be more precise, following Gribov, we discuss the path integral restriction to the Gribov horizon. The associated gap equation, which fixes the so-called Gribov parameter, is however shown to only possess a trivial solution, making the restriction obsolete. We relate this to the absence of radiative corrections in both gauge and ghost sectors. We give further evidence by employing the renormalization group which shows that, for this kind of topological model, the gap equation indeed forbids the introduction of a massive Gribov parameter.
138 - Atushi Tanaka , Taksu Cheon 2015
An adiabatic change of parameters along a closed path may interchange the (quasi-)eigenenergies and eigenspaces of a closed quantum system. Such discrepancies induced by adiabatic cycles are refereed to as the exotic quantum holonomy, which is an extension of the geometric phase. Small adiabatic cycles induce no change on eigenspaces, whereas some large adiabatic cycles interchange eigenspaces. We explain the topological formulation for the eigenspace anholonomy, where the homotopy equivalence precisely distinguishes the larger cycles from smaller ones. An application to two level systems is explained. We also examine the cycles that involve the adiabatic evolution across an exact crossing, and the diabatic evolution across an avoided crossing. The latter is a nonadiabatic example of the exotic quantum holonomy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا