Do you want to publish a course? Click here

The core shift effect in the blazar 3C 454.3

184   0   0.0 ( 0 )
 Added by Alexander Kutkin
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Opacity-driven shifts of the apparent VLBI core position with frequency (the core shift effect) probe physical conditions in the innermost parts of jets in active galactic nuclei. We present the first detailed investigation of this effect in the brightest gamma-ray blazar 3C454.3 using direct measurements from simultaneous 4.6-43 GHz VLBA observations, and a time lag analysis of 4.8-37 GHz lightcurves from the UMRAO, CrAO, and Metsahovi observations in 2007-2009. The results support the standard Konigl model of jet physics in the VLBI core region. The distance of the core from the jet origin r_c(nu), the core size W(nu), and the lightcurve time lag DT(nu) all depend on the observing frequency nu as r_c(nu)~W(nu)~ DT(nu)~nu^-1/k. The obtained range of k=0.6-0.8 is consistent with the synchrotron self-absorption being the dominating opacity mechanism in the jet. The similar frequency dependence of r_c(nu) and W(nu) suggests that the external pressure gradient does not dictate the jet geometry in the cm-band core region. Assuming equipartition, the magnetic field strength scales with distance r as B = 0.4(r/1pc)^-0.8 G. The total kinetic power of electron/positron jet is about 10^44 ergs/s.



rate research

Read More

316 - E. Benitez 2009
We performed an optical spectroscopic monitoring of the blazar 3C 454.3 from September 2003 to July 2008. Sixteen optical spectra were obtained during different runs, which constitute the first spectroscopic monitoring done in the rest-frame UV region (z=0.859). An overall flux variation of the MgII (2800 A) by a factor ~ 3 was observed, while the corresponding UV continuum (F_cont at 3000 A) changed by a factor ~ 14. The MgII emission lines respond proportionally to the continuum variations when the source is in a low-activity state. In contrast, near the optical outbursts detected in 2005 and 2007, the MgII emission lines showed little response to the continuum flux variations. During the monitored period the UV FeII flux changed by a factor ~ 6 and correlated with F_cont (r = 0.92). A negative correlation between EW(Mg II) and F_cont was found, i.e. the so-called Intrinsic Baldwin Effect.
Characterisation of the long-term variations in the broad line region in a luminous blazar, where Comptonisation of broad-line emission within a relativistic jet is the standard scenario for production of gamma-ray emission that dominates the spectral energy distribution. We analysed ten years of optical spectroscopic data from the Steward Observatory for the blazar 3C 454.3, as well as gamma-ray data from the Fermi Large Area Telescope (LAT). The optical spectra are dominated by a highly variable non-thermal synchrotron continuum with a prominent Mg II broad emission line. The line flux was obtained by spectral decomposition including significant contribution from the Fe II pseudo-continuum. Three methods were used to characterise variations in the line flux: (1) stacking of the continuum-subtracted spectra, (2) subtracting the running mean light curves calculated for different timescales, and (3) evaluating potential time delays via the discrete correlation function (DCF). Despite very large variations in the gamma-ray and optical continua, the line flux changes only moderately (< 0.1 dex). The data suggest that the line flux responds to a dramatic change in the blazar activity from a very high state in 2010 to a deep low state in 2012. Two interpretations are possible: either the line flux is anti-correlated with the continuum or the increase in the line luminosity is delayed by ~600 days. If this time delay results from the reverberation of poorly constrained accretion disc emission in both the broad-line region (BLR) and the synchrotron emitting blazar zone within a relativistic jet, we would obtain natural estimates for the BLR radius [R_{BLR,MgII} >~ 0.28 pc] and for the supermassive black hole mass [M_SMBH ~ 8.5x10^8 M_sun]. We did not identify additional examples of short-term flares of the line flux, in addition to the previously reported case observed in 2010.
The blazar 3C454.3 exhibited a strong flare seen in gamma-rays, X-rays, and optical/NIR bands during 3--12 December 2009. Emission in the V and J bands rose more gradually than did the gamma-rays and soft X-rays, though all peaked at nearly the same time. Optical polarization measurements showed dramatic changes during the flare, with a strong anti-correlation between optical flux and degree of polarization (which rose from ~ 3% to ~ 20%) during the declining phase of the flare. The flare was accompanied by large rapid swings in polarization angle of ~ 170 degree. This combination of behaviors appear to be unique. We have cm-band radio data during the same period but they show no correlation with variations at higher frequencies. Such peculiar behavior may be explained using jet models incorporating fully relativistic effects with a dominant source region moving along a helical path or by a shock-in-jet model incorporating three-dimensional radiation transfer if there is a dominant helical magnetic field. We find that spectral energy distributions at different times during the flare can be fit using modified one-zone models where only the magnetic field strength and particle break frequencies and normalizations need change. An optical spectrum taken at nearly the same time provides an estimate for the central black hole mass of ~ 2.3 * 10^9 M_sun. We also consider two weaker flares seen during the $sim 200$ d span over which multi-band data are available. In one of them, the V and J bands appear to lead the $gamma$-ray and X-ray bands by a few days; in the other, all variations are simultaneous.
131 - S. Vercellone 2012
3C 454.3 is the most variable and intense extragalactic gamma-ray blazar detected by AGILE and Fermi during the last 4 years. This remarkable source shows extreme flux variability (about a fact or of 20) on a time-scale of 24-48 hours, as well as repeated flares on a time-scale of more than a year. The dynamic range, from the quiescence up to the most intense gamma-ray super-flare, is of about two orders of magnitude. We present the gamma-ray properties of 3C 454.3, comparing both the characteristics of flares at different levels and their multi-wavelength behavior. Moreover, an interpretation of both the long- and short-term properties of 3C 454.3 is reviewed, with particular emphasis on the two gamma-ray super-flares observed in 2009 and 2010, when 3C 454.3 became the brightest source of the whole gamma-ray sky.
We present a multi-wavelength temporal analysis of the blazar 3C 454.3 during the high $gamma$-ray active period from May-December, 2014. Except for X-rays, the period is well sampled at near-infrared (NIR)-optical by the emph{SMARTS} facility and the source is detected continuously on daily timescale in the emph{Fermi}-LAT $gamma$-ray band. The source exhibits diverse levels of variability with many flaring/active states in the continuously sampled $gamma$-ray light curve which are also reflected in the NIR-optical light curves and the sparsely sampled X-ray light curve by the emph{Swift}-XRT. Multi-band correlation analysis of this continuous segment during different activity periods shows a change of state from no lags between IR and $gamma$-ray, optical and $gamma$-ray, and IR and optical to a state where $gamma$-ray lags the IR/optical by $sim$3 days. The results are consistent with the previous studies of the same during various $gamma$-ray flaring and active episodes of the source. This consistency, in turn, suggests an extended localized emission region with almost similar conditions during various $gamma$-ray activity states. On the other hand, the delay of $gamma$-ray with respect to IR/optical and a trend similar to IR/optical in X-rays along with strong broadband correlations favor magnetic field related origin with X-ray and $gamma$-ray being inverse Comptonized of IR/optical photons and external radiation field, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا