No Arabic abstract
We describe a method for fabrication of uniform aluminum nanowires with diameters below 15 nm. Electron beam lithography is used to define narrow wires, which are then etched using a sodium bicarbonate solution, while their resistance is simultaneously measured in-situ. The etching process can be stopped when the desired resistance is reached, and can be restarted at a later time. The resulting nanowires show a superconducting transition as a function of temperature and magnetic field that is consistent with their diameter. The width of the transition is similar to that of the lithographically defined wires, indicating that the etching process is uniform and that the wires are undamaged. This technique allows for precise control over the normal state resistance and can be used to create a variety of aluminum nanodevices.
We report conductance measurements in quantum wires made of aluminum arsenide, a heavy-mass, multi-valley one-dimensional (1D) system. Zero-bias conductance steps are observed as the electron density in the wire is lowered, with additional steps observable upon applying a finite dc bias. We attribute these steps to depopulation of successive 1D subbands. The quantum conductance is substantially reduced with respect to the anticipated value for a spin- and valley-degenerate 1D system. This reduction is consistent with disorder-induced, intra-wire backscattering which suppresses the transmission of 1D modes. Calculations are presented to demonstrate the role of strain in the 1D states of this cleaved-edge structure.
Superconducting microwave circuits based on coplanar waveguides (CPW) are susceptible to parasitic slotline modes which can lead to loss and decoherence. We motivate the use of superconducting airbridges as a reliable method for preventing the propagation of these modes. We describe the fabrication of these airbridges on superconducting resonators, which we use to measure the loss due to placing airbridges over CPW lines. We find that the additional loss at single photon levels is small, and decreases at higher drive powers.
Catalytic hydrogenation of graphite has recently attracted renewed attention, as a route for nano-patterning of graphene and to produce graphene nano-ribbons. These reports show that metallic nanoparticles etch surface layers of graphite, or graphene anisotropically along the crystallographic zigzag <11-20> or armchair <1010> directions. On graphene the etching direction can be influenced by external magnetic fields or the substrate. Here we report the sub-surface etching of highly oriented pyrolytic graphite (HOPG) by Ni nanoparticles, to form a network of tunnels, as seen by SEM and STM. In this new nanoporous form of graphite, the top layers bend inward on top of the tunnels, while their local density of states remains fundamentally unchanged. Engineered nanoporous tunnel networks in graphite allow further chemical modification and may find applications in storage or sensing.
We report low-temperature differential conductance measurements in aluminum arsenide cleaved-edge overgrown quantum wires in the pinch-off regime. At zero source-drain bias we observe Coulomb blockade conductance resonances that become vanishingly small as the temperature is lowered below $250 {rm mK}$. We show that this behavior can be interpreted as a classical-to-stochastic Coulomb blockade cross-over in a series of asymmetric quantum dots, and offer a quantitative analysis of the temperature-dependence of the resonances lineshape. The conductance behavior at large source-drain bias is suggestive of the charge density wave conduction expected for a chain of quantum dots.
Lithographically fabricated point contacts serve as important examples of mesoscopic conductors, as electrodes for molecular electronics, and as ultra-sensitive transducers for mechanical motion. We have developed a reproducible technique for fabricating metallic point contacts though electromigration. We employ fast analog feedback in a four-wire configuration in combination with slower computer controlled feedback to avoid catastrophic instability. This hybrid system allows electromigration to proceed while dissipating approximately constant power in the wire. We are able to control the final resistance of the point contact precisely below 5 kOmega and to within a factor of three when the target resistance approaches 12 kOmega where only a single conducting channel remains.