Do you want to publish a course? Click here

AGN feedback in clusters: shock and sound heating

235   0   0.0 ( 0 )
 Added by Paul Nulsen
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations support the view that feedback, in the form of radio outbursts from active nuclei in central galaxies, prevents catastrophic cooling of gas and rapid star formation in many groups and clusters of galaxies. Variations in jet power drive a succession of weak shocks that can heat regions close to the active galactic nuclei (AGN). On larger scales, shocks fade into sound waves. The Braginskii viscosity determines a well-defined sound damping rate in the weakly magnetized intracluster medium (ICM) that can provide sufficient heating on larger scales. It is argued that weak shocks and sound dissipation are the main means by which radio AGN heat the ICM, in which case, the power spectrum of AGN outbursts plays a central role in AGN feedback.



rate research

Read More

We use 1 kpc resolution cosmological AMR simulations of a Virgo-like galaxy cluster to investigate the effect of feedback from supermassive black holes (SMBH) on the mass distribution of dark matter, gas and stars. We compared three different models: (i) a standard galaxy formation model featuring gas cooling, star formation and supernovae feedback, (ii) a quenching model for which star formation is artificially suppressed in massive halos and finally (iii) the recently proposed AGN feedback model of Booth & Schaye (2009). Without AGN feedback (even in the quenching case), our simulated cluster suffers from a strong overcooling problem, with a stellar mass fraction significantly above observed values in M87. The baryon distribution is highly concentrated, resulting in a strong adiabatic contraction (AC) of dark matter. With AGN feedback, on the contrary, the stellar mass in the bright central galaxy (BCG) lies below observational estimates and the overcooling problem disappears. The stellar mass of the BCG is seen to increase with increasing mass resolution, suggesting that our stellar masses converges to the correct value from below. The gas and total mass distributions are in striking agreement with observations. We also find a slight deficit (~10%) of baryons at the virial radius, due to the effect of AGN-driven shock waves pushing gas to Mpc scales and beyond. This baryon deficit results in a slight adiabatic expansion of the dark matter distribution, that can be explained quantitatively by AC theory.
We present a detailed investigation of the X-ray luminosity (Lx)-gas temperature (Tvir) relation of the complete X-ray flux-limited sample of the 64 brightest galaxy clusters in the sky (HIFLUGCS). We study the influence of two astrophysical processes, active galactic nuclei (AGN) heating and intracluster medium (ICM) cooling, on the Lx-Tvir relation, simultaneously for the first time. We determine best-fit relations for different subsamples using the cool-core strength and the presence of central radio activity as selection criteria. We find the strong cool-core clusters (SCCs) with short cooling times (< 1Gyr)to display the steepest relation (Lx ~ Tvir^{3.33}) and the non-cool-core clusters (NCCs) with long cooling times (> 7.7Gyr) to display the shallowest (Lx ~ Tvir^{2.42}). This has the simple implication that on the high-mass scale (Tvir > 2.5keV) the steepening of the Lx-Tvir relation is mainly due to the cooling of the intracluster medium gas. We propose that ICM cooling and AGN heating are both important in shaping the Lx-Tvir relation but on different length-scales. While our study indicates that ICM cooling dominates on cluster scales (Tvir > 2.5keV), we speculate that AGN heating dominates the scaling relation in poor clusters and groups (Tvir < 2.5keV). The intrinsic scatter about the Lx-Tvir relation in X-ray luminosity for the whole sample is 45.4% and varies from a minimum of 34.8% for weak cool-core clusters to a maximum of 59.4% for clusters with no central radio source. We find that after excising the cooling region, the scatter in the Lx-Tvir relation drops from 45.4% to 39.1%, implying that the cooling region contributes ~ 27% to the overall scatter. Lastly, we find the true SCC fraction to be 25% lower than the observed one and the true normalizations of the Lx-Tvir relations to be lower by 12%, 7%, and 17% for SCC, WCC, and NCC clusters, respectively. [abridged]
By means of zoom-in hydrodynamic simulations we quantify the amount of neutral hydrogen (HI) hosted by groups and clusters of galaxies. Our simulations, which are based on an improved formulation of smoothed particle hydrodynamics (SPH), include radiative cooling, star formation, metal enrichment and supernova feedback, and can be split in two different groups, depending on whether feedback from active galactic nuclei (AGN) is turned on or off. Simulations are analyzed to account for HI self-shielding and the presence of molecular hydrogen. We find that the mass in neutral hydrogen of dark matter halos monotonically increases with the halo mass and can be well described by a power-law of the form $M_{rm HI}(M,z)propto M^{3/4}$. Our results point out that AGN feedback reduces both the total halo mass and its HI mass, although it is more efficient in removing HI. We conclude that AGN feedback reduces the neutral hydrogen mass of a given halo by $sim50%$, with a weak dependence on halo mass and redshift. The spatial distribution of neutral hydrogen within halos is also affected by AGN feedback, whose effect is to decrease the fraction of HI that resides in the halo inner regions. By extrapolating our results to halos not resolved in our simulations we derive astrophysical implications from the measurements of $Omega_{rm HI}(z)$: halos with circular velocities larger than $sim25~{rm km/s}$ are needed to host HI in order to reproduce observations. We find that only the model with AGN feedback is capable of reproducing the value of $Omega_{rm HI}b_{rm HI}$ derived from available 21cm intensity mapping observations.
It is now widely accepted that heating processes play a fundamental role in galaxy clusters, struggling in an intricate but fascinating `dance with its antagonist, radiative cooling. Last generation observations, especially X-ray, are giving us tiny hints about the notes of this endless ballet. Cavities, shocks, turbulence and wide absorption-lines indicate the central active nucleus is injecting huge amount of energy in the intracluster medium. However, which is the real dominant engine of self-regulated heating? One of the model we propose are massive subrelativistic outflows, probably generated by a wind disc or just the result of the entrainment on kpc scale by the fast radio jet. Using a modified version of AMR code FLASH 3.2, we explored several feedback mechanisms which self-regulate the mechanical power. Two are the best schemes that answer our primary question, id est quenching cooling flow and at the same time preserving a cool core appearance for a long term evolution (7 Gyr): one more explosive (with efficiencies 0.005 - 0.01), triggered by central cooled gas, and the other gentler, ignited by hot gas Bondi accretion (with efficiency 0.1). These three-dimensional simulations show that the total energy injected is not the key aspect, but the results strongly depend on how energy is given to the ICM. We follow the dynamics of best model (temperature, density, SB maps and profiles) and produce many observable predictions: buoyant bubbles, ripples, turbulence, iron abundance maps and hydrostatic equilibrium deviation. We present a deep discussion of merits and flaws of all our models, with a critical eye towards observational concordance.
Jets from active galactic nuclei in the centers of galaxy clusters inflate cavities of low density relativistic plasma and drive shock and sound waves into the intracluster medium. When these waves overrun previously inflated cavities, they form a differentially rotating vortex through the Richtmyer-Meshkov instability. The dissipation of energy captured in the vortex can contribute to the feedback of energy into the atmospheres of cool core clusters. Using a series of hydrodynamic simulations we investigate the efficiency of this process: we calculate the kinetic energy in the vortex by decomposing the velocity field into its irrotational and solenoidal parts. Compared to the two-dimensional case, the 3-dimensional Richtmyer-Meshkov instability is about a factor of 2 more efficient. The energy in the vortex field for weak shocks is E_vortex ~ rho_ICM v_shock^2 V_bubble (with dependence on the geometry, density contrast, and shock width). For strong shocks, the vortex becomes dynamically unstable, quickly dissipating its energy via a turbulent cascade. We derive a number of diagnostics for observations and laboratory experiments of shock-bubble interactions, like the shock-vortex standoff distance, which can be used to derive lower limits on the Mach number. The differential rotation of the vortex field leads to viscous dissipation, which is sufficiently efficient to react to cluster cooling and to dissipate the vortex energy within the cooling radius of the cluster for a reasonable range of vortex parameters. For sufficiently large filling factors (of order a few percent or larger), this process could thus contribute significantly to AGN feedback in galaxy clusters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا