Do you want to publish a course? Click here

Hydrodynamic simulations of the central molecular zone with realistic Galactic potential

75   0   0.0 ( 0 )
 Added by Jihye Shin
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present hydrodynamic simulations of gas clouds inflowing from the disk to a few hundred parsec region of the Milky Way. A gravitational potential is generated to include realistic Galactic structures by using thousands of multipole expansions that describe 6.4 million stellar particles of a self-consistent Galaxy simulation. We find that a hybrid multipole expansion model, with two different basis sets and a thick disk correction, accurately reproduces the overall structures of the Milky Way. Through non-axisymmetric Galactic structures of an elongated bar and spiral arms, gas clouds in the disk inflow to the nuclear region and form a central molecular zone (CMZ)-like nuclear ring. We find that the size of the nuclear ring evolves into ~240 pc at T~1500 Myr, regardless of the initial size. For most simulation runs, the rate of gas inflow to the nuclear region is equilibrated to ~0.02 M_sun/yr. The nuclear ring is off-centered, relative to the Galactic center, by the lopsided central mass distribution of the Galaxy model, and thus an asymmetric mass distribution of the nuclear ring arises accordingly. The vertical asymmetry of the the Galaxy model also causes the nuclear ring to be tilted along the Galactic plane. During the first ~100 Myr, the vertical frequency of the gas motion is twice that of the orbital frequency, thus the projected nuclear ring shows a twisted, infinity-like shape.



rate research

Read More

The Milky Ways central molecular zone (CMZ) has emerged in recent years as a unique laboratory for the study of star formation. Here we use the simulations presented in Tress et al. 2020 to investigate star formation in the CMZ. These simulations resolve the structure of the interstellar medium at sub-parsec resolution while also including the large-scale flow in which the CMZ is embedded. Our main findings are as follows. (1) While most of the star formation happens in the CMZ ring at $Rgtrsim100 {, rm pc}$, a significant amount also occurs closer to SgrA* at $R lesssim 10{, rm pc}$. (2) Most of the star formation in the CMZ happens downstream of the apocentres, consistent with the pearls-on-a-string scenario, and in contrast to the notion that an absolute evolutionary timeline of star formation is triggered by pericentre passage. (3) Within the timescale of our simulations ($sim100$ Myr), the depletion time of the CMZ is constant within a factor of $sim2$. This suggests that variations in the star formation rate are primarily driven by variations in the mass of the CMZ, caused for example by AGN feedback or externally-induced changes in the bar-driven inflow rate, and not by variations in the depletion time. (4) We study the trajectories of newly born stars in our simulations. We find several examples that have age and 3D velocity compatible with those of the Arches and Quintuplet clusters. Our simulations suggest that these prominent clusters originated near the collision sites where the bar-driven inflow accretes onto the CMZ, at symmetrical locations with respect to the Galactic centre, and that they have already decoupled from the gas in which they were born.
We use hydrodynamical simulations to study the Milky Ways central molecular zone (CMZ). The simulations include a non-equilibrium chemical network, the gas self-gravity, star formation and supernova feedback. We resolve the structure of the interstellar medium at sub-parsec resolution while also capturing the interaction between the CMZ and the bar-driven large-scale flow out to $Rsim 5kpc$. Our main findings are as follows: (1) The distinction between inner ($Rlesssim120$~pc) and outer ($120lesssim Rlesssim450$~pc) CMZ that is sometimes proposed in the literature is unnecessary. Instead, the CMZ is best described as single structure, namely a star-forming ring with outer radius $Rsimeq 200$~pc which includes the 1.3$^circ$ complex and which is directly interacting with the dust lanes that mediate the bar-driven inflow. (2) This accretion can induce a significant tilt of the CMZ out of the plane. A tilted CMZ might provide an alternative explanation to the $infty$-shaped structure identified in Herschel data by Molinari et al. 2011. (3) The bar in our simulation efficiently drives an inflow from the Galactic disc ($Rsimeq 3$~kpc) down to the CMZ ($Rsimeq200$~pc) of the order of $1rm,M_odot,yr^{-1}$, consistent with observational determinations. (4) Supernova feedback can drive an inflow from the CMZ inwards towards the circumnuclear disc of the order of $sim0.03,rm M_odot,yr^{-1}$. (5) We give a new interpretation for the 3D placement of the 20 and 50 km s$^{-1}$ clouds, according to which they are close ($Rlesssim30$~pc) to the Galactic centre, but are also connected to the larger-scale streams at $Rgtrsim100$~pc.
143 - Juergen Ott 2014
We present maps of a large number of dense molecular gas tracers across the Central Molecular Zone of our Galaxy. The data were taken with the CSIRO/CASS Mopra telescope in Large Projects in the 1.3cm, 7mm, and 3mm wavelength regimes. Here, we focus on the brightness of the shock tracers SiO and HNCO, molecules that are liberated from dust grains under strong (SiO) and weak (HNCO) shocks. The shocks may have occurred when the gas enters the bar regions and the shock differences could be due to differences in the moving cloud mass. Based on tracers of ionizing photons, it is unlikely that the morphological differences are due to selective photo-dissociation of the molecules. We also observe direct heating of molecular gas in strongly shocked zones, with a high SiO/HNCO ratios, where temperatures are determined from the transitions of ammonia. Strong shocks appear to be the most efficient heating source of molecular gas, apart from high energy emission emitted by the central supermassive black hole Sgr A* and the processes within the extreme star formation region Sgr B2.
The Galactic center is the closest region in which we can study star formation under extreme physical conditions like those in high-redshift galaxies. We measure the temperature of the dense gas in the central molecular zone (CMZ) and examine what drives it. We mapped the inner 300 pc of the CMZ in the temperature-sensitive J = 3-2 para-formaldehyde (p-H$_2$CO) transitions. We used the $3_{2,1} - 2_{2,0} / 3_{0,3} - 2_{0,2}$ line ratio to determine the gas temperature in $n sim 10^4 - 10^5 $cm$^{-3}$ gas. We have produced temperature maps and cubes with 30 and 1 km/s resolution and published all data in FITS form. Dense gas temperatures in the Galactic center range from ~60 K to > 100 K in selected regions. The highest gas temperatures T_G > 100 K are observed around the Sgr B2 cores, in the extended Sgr B2 cloud, the 20 km/s and 50 km/s clouds, and in The Brick (G0.253+0.016). We infer an upper limit on the cosmic ray ionization rate ${zeta}_{CR} < 10^{-14}$ 1/s. The dense molecular gas temperature of the region around our Galactic center is similar to values found in the central regions of other galaxies, in particular starburst systems. The gas temperature is uniformly higher than the dust temperature, confirming that dust is a coolant in the dense gas. Turbulent heating can readily explain the observed temperatures given the observed line widths. Cosmic rays cannot explain the observed variation in gas temperatures, so CMZ dense gas temperatures are not dominated by cosmic ray heating. The gas temperatures previously observed to be high in the inner ~75 pc are confirmed to be high in the entire CMZ.
The Survey of Water and Ammonia in the Galactic Center (SWAG) covers the Central Molecular Zone (CMZ) of the Milky Way at frequencies between 21.2 and 25.4 GHz obtained at the Australia Telescope Compact Array at $sim 0.9$ pc spatial and $sim 2.0$ km s$^{-1}$ spectral resolution. In this paper, we present data on the inner $sim 250$ pc ($1.4^circ$) between Sgr C and Sgr B2. We focus on the hyperfine structure of the metastable ammonia inversion lines (J,K) = (1,1) - (6,6) to derive column density, kinematics, opacity and kinetic gas temperature. In the CMZ molecular clouds, we find typical line widths of $8-16$ km s$^{-1}$ and extended regions of optically thick ($tau > 1$) emission. Two components in kinetic temperature are detected at $25-50$ K and $60-100$ K, both being significantly hotter than dust temperatures throughout the CMZ. We discuss the physical state of the CMZ gas as traced by ammonia in the context of the orbital model by Kruijssen et al. (2015) that interprets the observed distribution as a stream of molecular clouds following an open eccentric orbit. This allows us to statistically investigate the time dependencies of gas temperature, column density and line width. We find heating rates between $sim 50$ and $sim 100$ K Myr$^{-1}$ along the stream orbit. No strong signs of time dependence are found for column density or line width. These quantities are likely dominated by cloud-to-cloud variations. Our results qualitatively match the predictions of the current model of tidal triggering of cloud collapse, orbital kinematics and the observation of an evolutionary sequence of increasing star formation activity with orbital phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا