Do you want to publish a course? Click here

Performance of Social Network Sensors During Hurricane Sandy

148   0   0.0 ( 0 )
 Added by Manuel Cebrian
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow, and a mean to derive early-warning sensors, improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioural properties derived from the friendship paradox, is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users network centrality effectively translate into moderate awareness advantage (up to 26 hours); and that geo-location of users within or outside of the hurricane-affected area plays significant role in determining the scale of such advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility of implementing a simple sentiment sensing technique to detect and locate disasters.



rate research

Read More

Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
In September 2017, Hurricane Maria made landfall across the Caribbean region as a category 4 storm. In the aftermath, many residents of Puerto Rico were without power or clean running water for nearly a year. Using both English and Spanish tweets from September 16 to October 15 2017, we investigate discussion of Maria both on and off the island, constructing a proxy for the temporal network of communication between victims of the hurricane and others. We use information theoretic tools to compare the lexical divergence of different subgroups within the network. Lastly, we quantify temporal changes in user prominence throughout the event. We find at the global level that Spanish tweets more often contained messages of hope and a focus on those helping. At the local level, we find that information propagating among Puerto Ricans most often originated from sources local to the island, such as journalists and politicians. Critically, content from these accounts overshadows content from celebrities, global news networks, and the like for the large majority of the time period studied. Our findings reveal insight into ways social media campaigns could be deployed to disseminate relief information during similar events in the future.
66 - Dmitry Zinoviev 2020
Kompromat (the Russian word for compromising material) has been efficiently used to harass Russian political and business elites since the days of the USSR. Online crowdsourcing projects such as RuCompromat made it possible to catalog and analyze kompromat using quantitative techniques -- namely, social network analysis. In this paper, we constructed a social network of 11,000 Russian and foreign nationals affected by kompromat in Russia in 1991 -- 2020. The network has an excellent modular structure with 62 dense communities. One community contains prominent American officials, politicians, and entrepreneurs (including President Donald Trump) and appears to concern Russias controversial interference in the 2016 U.S. presidential elections. Various network centrality measures identify seventeen most central kompromat figures, with President Vladimir Putin solidly at the top. We further reveal four types of communities dominated by entrepreneurs, politicians, bankers, and law enforcement officials (siloviks), the latter disjointed from the first three.
In many real-world scenarios, it is nearly impossible to collect explicit social network data. In such cases, whole networks must be inferred from underlying observations. Here, we formulate the problem of inferring latent social networks based on network diffusion or disease propagation data. We consider contagions propagating over the edges of an unobserved social network, where we only observe the times when nodes became infected, but not who infected them. Given such node infection times, we then identify the optimal network that best explains the observed data. We present a maximum likelihood approach based on convex programming with a l1-like penalty term that encourages sparsity. Experiments on real and synthetic data reveal that our method near-perfectly recovers the underlying network structure as well as the parameters of the contagion propagation model. Moreover, our approach scales well as it can infer optimal networks of thousands of nodes in a matter of minutes.
247 - Swapnil Dhamal 2018
We study the effectiveness of using multiple phases for maximizing the extent of information diffusion through a social network, and present insights while considering various aspects. In particular, we focus on the independent cascade model with the possibility of adaptively selecting seed nodes in multiple phases based on the observed diffusion in preceding phases, and conduct a detailed simulation study on real-world network datasets and various values of seeding budgets. We first present a negative result that more phases do not guarantee a better spread, however the adaptability advantage of more phases generally leads to a better spread in practice, as observed on real-world datasets. We study how diffusing in multiple phases affects the mean and standard deviation of the distribution representing the extent of diffusion. We then study how the number of phases impacts the effectiveness of multiphase diffusion, how the diffusion progresses phase-by-phase, and what is an optimal way to split the total seeding budget across phases. Our experiments suggest a significant gain when we move from single phase to two phases, and an appreciable gain when we further move to three phases, but the marginal gain thereafter is usually not very significant. Our main conclusion is that, given the number of phases, an optimal way to split the budget across phases is such that the number of nodes influenced in each phase is almost the same.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا