Do you want to publish a course? Click here

Local information sources received the most attention from Puerto Ricans during the aftermath of Hurricane Maria

271   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In September 2017, Hurricane Maria made landfall across the Caribbean region as a category 4 storm. In the aftermath, many residents of Puerto Rico were without power or clean running water for nearly a year. Using both English and Spanish tweets from September 16 to October 15 2017, we investigate discussion of Maria both on and off the island, constructing a proxy for the temporal network of communication between victims of the hurricane and others. We use information theoretic tools to compare the lexical divergence of different subgroups within the network. Lastly, we quantify temporal changes in user prominence throughout the event. We find at the global level that Spanish tweets more often contained messages of hope and a focus on those helping. At the local level, we find that information propagating among Puerto Ricans most often originated from sources local to the island, such as journalists and politicians. Critically, content from these accounts overshadows content from celebrities, global news networks, and the like for the large majority of the time period studied. Our findings reveal insight into ways social media campaigns could be deployed to disseminate relief information during similar events in the future.



rate research

Read More

Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow, and a mean to derive early-warning sensors, improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioural properties derived from the friendship paradox, is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users network centrality effectively translate into moderate awareness advantage (up to 26 hours); and that geo-location of users within or outside of the hurricane-affected area plays significant role in determining the scale of such advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility of implementing a simple sentiment sensing technique to detect and locate disasters.
Information technologies today can inform each of us about the best alternatives for shortest paths from origins to destinations, but they do not contain incentives or alternatives that manage the information efficiently to get collective benefits. To obtain such benefits, we need to have not only good estimates of how the traffic is formed but also to have target strategies to reduce enough vehicles from the best possible roads in a feasible way. The opportunity is that during large events the traffic inconveniences in large cities are unusually high, yet temporary, and the entire population may be more willing to adopt collective recommendations for social good. In this paper, we integrate for the first time big data resources to quantify the impact of events and propose target strategies for collective good at urban scale. In the context of the Olympic Games in Rio de Janeiro, we first predict the expected increase in traffic. To that end, we integrate data from: mobile phones, Airbnb, Waze, and transit information, with game schedules and information of venues. Next, we evaluate the impact of the Olympic Games to the travel of commuters, and propose different route choice scenarios during the peak hours. Moreover, we gather information on the trips that contribute the most to the global congestion and that could be redirected from vehicles to transit. Interestingly, we show that (i) following new route alternatives during the event with individual shortest path can save more collective travel time than keeping the routine routes, uncovering the positive value of information technologies during events; (ii) with only a small proportion of people selected from specific areas switching from driving to public transport, the collective travel time can be reduced to a great extent. Results are presented on-line for the evaluation of the public and policy makers.
Social media are massive marketplaces where ideas and news compete for our attention. Previous studies have shown that quality is not a necessary condition for online virality and that knowledge about peer choices can distort the relationship between quality and popularity. However, these results do not explain the viral spread of low-quality information, such as the digital misinformation that threatens our democracy. We investigate quality discrimination in a stylized model of online social network, where individual agents prefer quality information, but have behavioral limitations in managing a heavy flow of information. We measure the relationship between the quality of an idea and its likelihood to become prevalent at the system level. We find that both information overload and limited attention contribute to a degradation in the markets discriminative power. A good tradeoff between discriminative power and diversity of information is possible according to the model. However, calibration with empirical data characterizing information load and finite attention in real social media reveals a weak correlation between quality and popularity of information. In these realistic conditions, the model predicts that high-quality information has little advantage over low-quality information.
89 - Yao Ma 2017
Networks such as social networks, airplane networks, and citation networks are ubiquitous. The adjacency matrix is often adopted to represent a network, which is usually high dimensional and sparse. However, to apply advanced machine learning algorithms to network data, low-dimensional and continuous representations are desired. To achieve this goal, many network embedding methods have been proposed recently. The majority of existing methods facilitate the local information i.e. local connections between nodes, to learn the representations, while completely neglecting global information (or node status), which has been proven to boost numerous network mining tasks such as link prediction and social recommendation. Hence, it also has potential to advance network embedding. In this paper, we study the problem of preserving local and global information for network embedding. In particular, we introduce an approach to capture global information and propose a network embedding framework LOG, which can coherently model {bf LO}cal and {bf G}lobal information. Experimental results demonstrate the ability to preserve global information of the proposed framework. Further experiments are conducted to demonstrate the effectiveness of learned representations of the proposed framework.
78 - En-Yu Yu , Yan Fu , Jun-Lin Zhou 2021
In transportation, communication, social and other real complex networks, some critical edges act a pivotal part in controlling the flow of information and maintaining the integrity of the structure. Due to the importance of critical edges in theoretical studies and practical applications, the identification of critical edges gradually become a hot topic in current researches. Considering the overlap of communities in the neighborhood of edges, a novel and effective metric named subgraph overlap (SO) is proposed to quantifying the significance of edges. The experimental results show that SO outperforms all benchmarks in identifying critical edges which are crucial in maintaining the integrity of the structure and functions of networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا