Do you want to publish a course? Click here

Effectiveness of Diffusing Information through a Social Network in Multiple Phases

248   0   0.0 ( 0 )
 Added by Swapnil Dhamal
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We study the effectiveness of using multiple phases for maximizing the extent of information diffusion through a social network, and present insights while considering various aspects. In particular, we focus on the independent cascade model with the possibility of adaptively selecting seed nodes in multiple phases based on the observed diffusion in preceding phases, and conduct a detailed simulation study on real-world network datasets and various values of seeding budgets. We first present a negative result that more phases do not guarantee a better spread, however the adaptability advantage of more phases generally leads to a better spread in practice, as observed on real-world datasets. We study how diffusing in multiple phases affects the mean and standard deviation of the distribution representing the extent of diffusion. We then study how the number of phases impacts the effectiveness of multiphase diffusion, how the diffusion progresses phase-by-phase, and what is an optimal way to split the total seeding budget across phases. Our experiments suggest a significant gain when we move from single phase to two phases, and an appreciable gain when we further move to three phases, but the marginal gain thereafter is usually not very significant. Our main conclusion is that, given the number of phases, an optimal way to split the budget across phases is such that the number of nodes influenced in each phase is almost the same.



rate research

Read More

66 - Dmitry Zinoviev 2020
Kompromat (the Russian word for compromising material) has been efficiently used to harass Russian political and business elites since the days of the USSR. Online crowdsourcing projects such as RuCompromat made it possible to catalog and analyze kompromat using quantitative techniques -- namely, social network analysis. In this paper, we constructed a social network of 11,000 Russian and foreign nationals affected by kompromat in Russia in 1991 -- 2020. The network has an excellent modular structure with 62 dense communities. One community contains prominent American officials, politicians, and entrepreneurs (including President Donald Trump) and appears to concern Russias controversial interference in the 2016 U.S. presidential elections. Various network centrality measures identify seventeen most central kompromat figures, with President Vladimir Putin solidly at the top. We further reveal four types of communities dominated by entrepreneurs, politicians, bankers, and law enforcement officials (siloviks), the latter disjointed from the first three.
Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
The problem of maximizing information diffusion, given a certain budget expressed in terms of the number of seed nodes, is an important topic in social networks research. Existing literature focuses on single phase diffusion where all seed nodes are selected at the beginning of diffusion and all the selected nodes are activated simultaneously. This paper undertakes a detailed investigation of the effect of selecting and activating seed nodes in multiple phases. Specifically, we study diffusion in two phases assuming the well-studied independent cascade model. First, we formulate an objective function for two-phase diffusion, investigate its properties, and propose efficient algorithms for finding seed nodes in the two phases. Next, we study two associated problems: (1) budget splitting which seeks to optimally split the total budget between the two phases and (2) scheduling which seeks to determine an optimal delay after which to commence the second phase. Our main conclusions include: (a) under strict temporal constraints, use single phase diffusion, (b) under moderate temporal constraints, use two-phase diffusion with a short delay while allocating most of the budget to the first phase, and (c) when there are no temporal constraints, use two-phase diffusion with a long delay while allocating roughly one-third of the budget to the first phase.
Current social networks are of extremely large-scale generating tremendous information flows at every moment. How information diffuse over social networks has attracted much attention from both industry and academics. Most of the existing works on information diffusion analysis are based on machine learning methods focusing on social network structure analysis and empirical data mining. However, the dynamics of information diffusion, which are heavily influenced by network users decisions, actions and their socio-economic interactions, is generally ignored by most of existing works. In this paper, we propose an evolutionary game theoretic framework to model the dynamic information diffusion process in social networks. Specifically, we derive the information diffusion dynamics in complete networks, uniform degree and non-uniform degree networks, with the highlight of two special networks, ErdH{o}s-Renyi random network and the Barabasi-Albert scale-free network. We find that the dynamics of information diffusion over these three kinds of networks are scale-free and the same with each other when the network scale is sufficiently large. To verify our theoretical analysis, we perform simulations for the information diffusion over synthetic networks and real-world Facebook networks. Moreover, we also conduct experiment on Twitter hashtags dataset, which shows that the proposed game theoretic model can well fit and predict the information diffusion over real social networks.
In this big data era, more and more social activities are digitized thereby becoming traceable, and thus the studies of social networks attract increasing attention from academia. It is widely believed that social networks play important role in the process of information diffusion. However, the opposite question, i.e., how does information diffusion process rebuild social networks, has been largely ignored. In this paper, we propose a new framework for understanding this reversing effect. Specifically, we first introduce a novel information diffusion model on social networks, by considering two types of individuals, i.e., smart and normal individuals, and two kinds of messages, true and false messages. Since social networks consist of human individuals, who have self-learning ability, in such a way that the trust of an individual to one of its neighbors increases (or decreases) if this individual received a true (or false) message from that neighbor. Based on such a simple self-learning mechanism, we prove that a social network can indeed become smarter, in terms of better distinguishing the true message from the false one. Moreover, we observe the emergence of social stratification based on the new model, i.e., the true messages initially posted by an individual closer to the smart one can be forwarded by more others, which is enhanced by the self-learning mechanism. We also find the crossover advantage, i.e., interconnection between two chain networks can make the related individuals possessing higher social influences, i.e., their messages can be forwarded by relatively more others. We obtained these results theoretically and validated them by simulations, which help better understand the reciprocity between social networks and information diffusion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا