Do you want to publish a course? Click here

L-Shape based Layout Fracturing for E-Beam Lithography

201   0   0.0 ( 0 )
 Added by Bei Yu
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Layout fracturing is a fundamental step in mask data preparation and e-beam lithography (EBL) writing. To increase EBL throughput, recently a new L-shape writing strategy is proposed, which calls for new L-shape fracturing, versus the conventional rectangular fracturing. Meanwhile, during layout fracturing, one must minimize very small/narrow features, also called slivers, due to manufacturability concern. This paper addresses this new research problem of how to perform L-shaped fracturing with sliver minimization. We propose two novel algorithms. The first one, rectangular merging (RM), starts from a set of rectangular fractures and merges them optimally to form L-shape fracturing. The second algorithm, direct L-shape fracturing (DLF), directly and effectively fractures the input layouts into L-shapes with sliver minimization. The experimental results show that our algorithms are very effective.



rate research

Read More

128 - Bei Yu , Kun Yuan , Jhih-Rong Gao 2014
Electron beam lithography (EBL) is a promising maskless solution for the technology beyond 14nm logic node. To overcome its throughput limitation, recently the traditional EBL system is extended into MCC system. %to further improve the throughput. In this paper, we present E-BLOW, a tool to solve the overlapping aware stencil planning (OSP) problems in MCC system. E-BLOW is integrated with several novel speedup techniques, i.e., successive relaxation, dynamic programming and KD-Tree based clustering, to achieve a good performance in terms of runtime and solution quality. Experimental results show that, compared with previous works, E-BLOW demonstrates better performance for both conventional EBL system and MCC system.
Triple patterning lithography (TPL) is one of the most promising techniques in the 14nm logic node and beyond. However, traditional LELELE type TPL technology suffers from native conflict and overlapping problems. Recently LELEEC process was proposed to overcome the limitations, where the third mask is used to generate the end-cuts. In this paper we propose the first study for LELEEC layout decomposition. Conflict graphs and end-cut graphs are constructed to extract all the geometrical relationships of input layout and end-cut candidates. Based on these graphs, integer linear programming (ILP) is formulated to minimize the conflict number and the stitch number.
88 - Bochen Tan , Jason Cong 2020
Recent years have witnessed the fast development of quantum computing. Researchers around the world are eager to run larger and larger quantum algorithms that promise speedups impossible to any classical algorithm. However, the available quantum computers are still volatile and error-prone. Thus, layout synthesis, which transforms quantum programs to meet these hardware limitations, is a crucial step in the realization of quantum computing. In this paper, we present two synthesizers, one optimal and one approximate but nearly optimal. Although a few optimal approaches to this problem have been published, our optimal synthesizer explores a larger solution space, thus is optimal in a stronger sense. In addition, it reduces time and space complexity exponentially compared to some leading optimal approaches. The key to this success is a more efficient spacetime-based variable encoding of the layout synthesis problem as a mathematical programming problem. By slightly changing our formulation, we arrive at an approximate synthesizer that is even more efficient and outperforms some leading heuristic approaches, in terms of additional gate cost, by up to 100%, and also fidelity by up to 10x on a comprehensive set of benchmark programs and architectures. For a specific family of quantum programs named QAOA, which is deemed to be a promising application for near-term quantum computers, we further adjust the approximate synthesizer by taking commutation into consideration, achieving up to 75% reduction in depth and up to 65% reduction in additional cost compared to the tool used in a leading QAOA study.
ALIGN (Analog Layout, Intelligently Generated from Netlists) is an open-source automatic layout generation flow for analog circuits. ALIGN translates an input SPICE netlist to an output GDSII layout, specific to a given technology, as specified by a set of design rules. The flow first automatically detects hierarchies in the circuit netlist and translates layout synthesis to a problem of hierarchical block assembly. At the lowest level, parameterized cells are generated using an abstraction of the design rules; these blocks are then assembled under geometric and electrical constraints to build the circuit layout. ALIGN has been applied to generate layouts for a diverse set of analog circuit families: low frequency analog blocks, wireline circuits, wireless circuits, and power delivery circuits.
119 - Florent Lecocq 2011
We present a novel shadow evaporation technique for the realization of junctions and capacitors. The design by E-beam lithography of strongly asymmetric undercuts on a bilayer resist enables in-situ fabrication of junctions and capacitors without the use of the well-known suspended bridge[1]. The absence of bridges increases the mechanical robustness of the resist mask as well as the accessible range of the junction size, from 0.01 to more than 10000 micron square. We have fabricated Al/AlOx/Al Josephson junctions, phase qubit and capacitors using a 100kV E- beam writer. Although this high voltage enables a precise control of the undercut, implementation using a conventional 20kV E-beam is also discussed. The phase qubit coherence times, extracted from spectroscopy resonance width, Rabi and Ramsey oscillations decay and energy relaxation measurements, are longer than the ones obtained in our previous samples realized by standard techniques. These results demonstrate the high quality of the junction obtained by this controlled undercut technique.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا