No Arabic abstract
ALIGN (Analog Layout, Intelligently Generated from Netlists) is an open-source automatic layout generation flow for analog circuits. ALIGN translates an input SPICE netlist to an output GDSII layout, specific to a given technology, as specified by a set of design rules. The flow first automatically detects hierarchies in the circuit netlist and translates layout synthesis to a problem of hierarchical block assembly. At the lowest level, parameterized cells are generated using an abstraction of the design rules; these blocks are then assembled under geometric and electrical constraints to build the circuit layout. ALIGN has been applied to generate layouts for a diverse set of analog circuit families: low frequency analog blocks, wireline circuits, wireless circuits, and power delivery circuits.
Recent years have witnessed the fast development of quantum computing. Researchers around the world are eager to run larger and larger quantum algorithms that promise speedups impossible to any classical algorithm. However, the available quantum computers are still volatile and error-prone. Thus, layout synthesis, which transforms quantum programs to meet these hardware limitations, is a crucial step in the realization of quantum computing. In this paper, we present two synthesizers, one optimal and one approximate but nearly optimal. Although a few optimal approaches to this problem have been published, our optimal synthesizer explores a larger solution space, thus is optimal in a stronger sense. In addition, it reduces time and space complexity exponentially compared to some leading optimal approaches. The key to this success is a more efficient spacetime-based variable encoding of the layout synthesis problem as a mathematical programming problem. By slightly changing our formulation, we arrive at an approximate synthesizer that is even more efficient and outperforms some leading heuristic approaches, in terms of additional gate cost, by up to 100%, and also fidelity by up to 10x on a comprehensive set of benchmark programs and architectures. For a specific family of quantum programs named QAOA, which is deemed to be a promising application for near-term quantum computers, we further adjust the approximate synthesizer by taking commutation into consideration, achieving up to 75% reduction in depth and up to 65% reduction in additional cost compared to the tool used in a leading QAOA study.
We present our experience of designing a single-chip controller for advanced digital still camera from specification all the way to mass production. The process involves collaboration with camera system designer, IP vendors, EDA vendors, silicon wafer foundry, package and testing houses, and camera maker. We also co-work with academic research groups to develop a JPEG codec IP and memory BIST and SOC testing methodology. In this presentation, we cover the problems encountered, our solutions, and lessons learned.
Layout fracturing is a fundamental step in mask data preparation and e-beam lithography (EBL) writing. To increase EBL throughput, recently a new L-shape writing strategy is proposed, which calls for new L-shape fracturing, versus the conventional rectangular fracturing. Meanwhile, during layout fracturing, one must minimize very small/narrow features, also called slivers, due to manufacturability concern. This paper addresses this new research problem of how to perform L-shaped fracturing with sliver minimization. We propose two novel algorithms. The first one, rectangular merging (RM), starts from a set of rectangular fractures and merges them optimally to form L-shape fracturing. The second algorithm, direct L-shape fracturing (DLF), directly and effectively fractures the input layouts into L-shapes with sliver minimization. The experimental results show that our algorithms are very effective.
The increasing complexity of modern configurable systems makes it critical to improve the level of automation in the process of system configuration. Such automation can also improve the agility of the development cycle, allowing for rapid and automated integration of decoupled workflows. In this paper, we present a new framework for automated configuration of systems representable as state machines. The framework leverages model checking and satisfiability modulo theories (SMT) and can be applied to any application domain representable using SMT formulas. Our approach can also be applied modularly, improving its scalability. Furthermore, we show how optimization can be used to produce configurations that are best according to some metric and also more likely to be understandable to humans. We showcase this framework and its flexibility by using it to configure a CGRA memory tile for various image processing applications.
Triple patterning lithography (TPL) is one of the most promising techniques in the 14nm logic node and beyond. However, traditional LELELE type TPL technology suffers from native conflict and overlapping problems. Recently LELEEC process was proposed to overcome the limitations, where the third mask is used to generate the end-cuts. In this paper we propose the first study for LELEEC layout decomposition. Conflict graphs and end-cut graphs are constructed to extract all the geometrical relationships of input layout and end-cut candidates. Based on these graphs, integer linear programming (ILP) is formulated to minimize the conflict number and the stitch number.