Do you want to publish a course? Click here

Nanopatterning by Laser Interference Lithography: Applications to Optical Devices

163   0   0.0 ( 0 )
 Added by Jung-Hun Seo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A systematic review, covering fabrication of nanoscale patterns by laser interference lithography (LIL) and their applications for optical devices are provided. LIL is a patterning method with simple, quick process over a large area without using a mask. LIL is a powerful technique for the definition of large-area, nanometer-scale, periodically patterned structures. Patterns are recorded in a light-sensitive medium that responds nonlinearly to the intensity distribution associated with the interference of two or more coherent beams of light. The photoresist patterns produced with LIL are the platform for further fabrication of nanostructures and growth of functional materials which are the building blocks for devices. Demonstration of optical and photonic devices by LIL is reviewed such as directed nano photonics and surface plasmon resonance (SPR) or large area membrane reflectors and anti-reflectors. Perspective on future directions for LIL and emerging applications in other fields are presented.



rate research

Read More

Self-organized semiconductor quantum dots represent almost ideal two-level systems, which have strong potential to applications in photonic quantum technologies. For instance, they can act as emitters in close-to-ideal quantum light sources. Coupled quantum dot systems with significantly increased functionality are potentially of even stronger interest since they can be used to host ultra-stable singlet-triplet spin qubits for efficient spin-photon interfaces and for a deterministic photonic 2D cluster-state generation. We realize an advanced quantum dot molecule (QDM) device and demonstrate excellent optical properties. The device includes electrically controllable QDMs based on stacked quantum dots in a pin-diode structure. The QDMs are deterministically integrated into a photonic structure with a circular Bragg grating using in-situ electron beam lithography. We measure a photon extraction efficiency of up to (24$pm$4)% in good agreement with numerical simulations. The coupling character of the QDMs is clearly demonstrated by bias voltage dependent spectroscopy that also controls the orbital couplings of the QDMs and their charge state in quantitative agreement with theory. The QDM devices show excellent single-photon emission properties with a multi-photon suppression of $g^{(2)}(0) = (3.9 pm 0.5) cdot 10^{-3}$. These metrics make the developed QDM devices attractive building blocks for use in future photonic quantum networks using advanced nanophotonic hardware.
The realization of a topological qubit calls for advanced techniques to readily and reproducibly engineer induced superconductivity in semiconductor nanowires. Here, we introduce an on-chip fabrication paradigm based on shadow walls that offers substantial advances in device quality and reproducibility. It allows for the implementation of novel quantum devices and ultimately topological qubits while eliminating many fabrication steps such as lithography and etching. This is critical to preserve the integrity and homogeneity of the fragile hybrid interfaces. The approach simplifies the reproducible fabrication of devices with a hard induced superconducting gap and ballistic normal-/superconductor junctions. Large gate-tunable supercurrents and high-order multiple Andreev reflections manifest the exceptional coherence of the resulting nanowire Josephson junctions. Our approach enables, in particular, the realization of 3-terminal devices, where zero-bias conductance peaks emerge in a magnetic field concurrently at both boundaries of the one-dimensional hybrids.
We show that interference can be the principle of operation of an all-optical switch and other nanoscale plasmonic interference devices (PIDs). The optical response of two types of planar plasmonic waveguides is studied theoretically: bent chains and Y-shaped configurations of closely-spaced metallic nanospheres. We study symmetric Y-shape arrays as an example of an all-optical switch and demonstrate that effective phase- and amplitude-sensitive control of the output signal can be achieved due to interference effects.
When the collective coupling of the rovibrational states in organic molecules and confined electromagnetic modes is sufficiently strong, the system enters into vibrational strong coupling, leading to the formation of hybrid light-matter quasiparticles. In this work we demonstrate theoretically how this hybridization in combination with stimulated Raman scattering can be utilized to widen the capabilities of Raman laser devices. We explore the conditions under which the lasing threshold can be diminished and the system can be transformed into an optical parametric oscillator. Finally, we show how the dramatic reduction of the many final molecular states into two collective excitations can be used to create an all-optical switch with output in the mid-infrared.
We present a technique to fabricate ultrathin (down to 20 nm) uniform electron transparent windows at dedicated locations in a SiN membrane for in situ transmission electron microscopy experiments. An electron-beam (e-beam) resist is spray-coated on the backside of the membrane in a KOH- etched cavity in silicon which is patterned using through-membrane electron-beam lithography. This is a controlled way to make transparent windows in membranes, whilst the topside of the membrane remains undamaged and retains its flatness. Our approach was optimized for MEMS-based heating chips but can be applied to any chip design. We show two different applications of this technique for (1) fabrication of a nanogap electrode by means of electromigration in thin free-standing metal films and (2) making low-noise graphene nanopore devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا