Do you want to publish a course? Click here

Multiple solutions in supersymmetry and the Higgs

95   0   0.0 ( 0 )
 Added by Ben Allanach PhD
 Publication date 2014
  fields Physics
and research's language is English
 Authors B.C. Allanach




Ask ChatGPT about the research

Weak-scale supersymmetry is a well motivated, if speculative, theory beyond the Standard Model of particle physics. It solves the thorny issue of the Higgs mass, namely: how can it be stable to quantum corrections, when they are expected to be $10^{15}$ times bigger than its mass? The experimental signal of the theory is the production and measurement of supersymmetric particles in the Large Hadron Collider experiments. No such particles have been seen to date, but hopes are high for the impending run in 2015. Searches for supersymmetric particles can be difficult to interpret. Here, we shall discuss the fact that, even given a well defined model of supersymmetry breaking with few parameters, there can be multiple solutions. These multiple solutions are physically different, and could potentially mean that points in parameter space have been ruled out by interpretations of LHC data when they shouldnt have been. We shall review the multiple solutions and illustrate their existence in a universal model of supersymmetry breaking.



rate research

Read More

Global frequentist fits to the CMSSM and NUHM1 using the MasterCode framework predicted m_h simeq 119 GeV in fits incorporating the g_mu-2 constraint and simeq 126 GeV without it. Recent results by ATLAS and CMS could be compatible with a Standard Model-like Higgs boson around m_h simeq 125 GeV. We use the previous MasterCode analysis to calculate the likelihood for a measurement of any nominal Higgs mass within the range of 115 to 130 GeV. Assuming a Higgs mass measurement at m_h simeq 125 GeV, we display updated global likelihood contours in the (m_0, m_{1/2}) and other parameter planes of the CMSSM and NUHM1, and present updated likelihood functions for m_gluino, m_squark, B to mu mu, and the spin-independent dark matter cross section sigma^si. The implications of dropping g_mu-2 from the fits are also discussed. We furthermore comment on a hypothetical measurement of m_h simeq 119 GeV.
Assuming that supersymmetry exists well above the weak scale, we derive the full one-loop matching conditions between the SM and the supersymmetric theory, allowing for the possibility of an intermediate Split-SUSY scale. We also compute two-loop QCD corrections to the matching condition of the Higgs quartic coupling. These results are used to improve the calculation of the Higgs mass in models with high-scale supersymmetry or split supersymmetry, reducing the theoretical uncertainty. We explore the phenomenology of a mini-split scenario with gaugino masses determined by anomaly mediation. Depending on the value of the higgsino mass, the theory predicts a variety of novel possibilities for the dark-matter particle.
Within the context of supersymmetric theories, explaining a 125 GeV Higgs motivates a consideration of a broader range of models. We consider a simple addition to the MSSM of a Sister Higgs ($Sigma_d$), a Higgs field that participates in electroweak symmetry breaking but does not give any direct masses to Standard Model matter fields. While a relatively minor addition, the phenomenological implications can be important. Such a field can be naturally charged under an additional symmetry group $G_s$. If gauged, the Higgs mass is naturally much larger than in the MSSM through an NMSSM-type interaction, but with $Sigma_d$ playing the role of $H_d$. The addition of the sister Higgs allows new R-parity violating operators $Sigma_d H_d E$, which are less constrained than conventional leptonic R-parity violation. Considerations of unification motivates the presence of colored $G_s$-charged fields. Production of these G-quarks can lead to new b-rich final states and modifications to decays of gluinos, as well as new opportunities for R-parity violation. Unlike a conventional fourth generation, G-quarks dominantly decay into a light jet and a scalar (potentially the Higgs), which then generally decays to b-jets. The presence of additional sister charges allows the possibilities that lightest sister-charged particle (LSiP) could be stable. We consider the possibility of an LSiP dark matter candidate and find it is generally very constrained.
The discovery of a light Higgs boson at the LHC opens a broad program of studies and measurements to understand the role of this particle in connection with New Physics and Cosmology. Supersymmetry is the best motivated and most thoroughly formulated and investigated model of New Physics which predicts a light Higgs boson and can explain dark matter. This paper discusses how the study of the Higgs boson connects with the search for supersymmetry and for dark matter at the LHC and at a future $e^+e^-$ collider and with dedicated underground dark matter experiments.
The Higgs sector is extended in $R$-symmetric supersymmetry theories by two iso-doublets $R_{d,u}$ which complement the standard iso-doublets $H_{d,u}$. We have analyzed masses and interactions of these novel states and describe their [non-standard] decay modes and their production channels at the LHC and $e^+e^-$ colliders.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا