Do you want to publish a course? Click here

The Higgs boson, Supersymmetry and Dark Matter: Relations and Perspectives

252   0   0.0 ( 0 )
 Added by Marco Battaglia
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The discovery of a light Higgs boson at the LHC opens a broad program of studies and measurements to understand the role of this particle in connection with New Physics and Cosmology. Supersymmetry is the best motivated and most thoroughly formulated and investigated model of New Physics which predicts a light Higgs boson and can explain dark matter. This paper discusses how the study of the Higgs boson connects with the search for supersymmetry and for dark matter at the LHC and at a future $e^+e^-$ collider and with dedicated underground dark matter experiments.



rate research

Read More

228 - Beranger Dumont 2014
Two major problems call for an extension of the Standard Model (SM): the hierarchy problem in the Higgs sector and the dark matter in the Universe. The discovery of a Higgs boson with mass of about 125 GeV was clearly the most significant piece of news from CERNs Large Hadron Collider (LHC). In addition to representing the ultimate triumph of the SM, it shed new light on the hierarchy problem and opened up new ways of probing new physics. The various measurements performed at Run I of the LHC constrain the Higgs couplings to SM particles as well as invisible and undetected decays. In this thesis, the impact of the LHC Higgs results on various new physics scenarios is assessed, carefully taking into account uncertainties and correlations between them. Generic modifications of the Higgs coupling strengths, possibly arising from extended Higgs sectors or higher-dimensional operators, are considered. Furthermore, specific new physics models are tested. This includes, in particular, the phenomenological Minimal Supersymmetric Standard Model. While a Higgs boson has been found, no sign of beyond the SM physics was observed at Run I of the LHC in spite of the large number of searches performed by the ATLAS and CMS collaborations. The implications of the negative results obtained in these searches constitute another important part of this thesis. First, supersymmetric models with a dark matter candidate are investigated in light of the negative searches for supersymmetry at the LHC using a so-called simplified model approach. Second, tools using simulated events to constrain any new physics scenario from the LHC results are presented. Moreover, during this thesis the selection criteria of several beyond the SM analyses have been reimplemented in the MadAnalysis 5 framework and made available in a public database.
This document summarises the current theoretical and experimental status of the di-Higgs boson production searches, and of the direct and indirect constraints on the Higgs boson self-coupling, with the wish to serve as a useful guide for the next years. The document discusses the theoretical status, including state-of-the-art predictions for di-Higgs cross sections, developments on the effective field theory approach, and studies on specific new physics scenarios that can show up in the di-Higgs final state. The status of di-Higgs searches and the direct and indirect constraints on the Higgs self-coupling at the LHC are presented, with an overview of the relevant experimental techniques, and covering all the variety of relevant signatures. Finally, the capabilities of future colliders in determining the Higgs self-coupling are addressed, comparing the projected precision that can be obtained in such facilities. The work has started as the proceedings of the Di-Higgs workshop at Colliders, held at Fermilab from the 4th to the 9th of September 2018, but it went beyond the topics discussed at that workshop and included further developments.
We propose a model that introduces a supersymmetric unparticle operator in the minimal supersymmetric Standard Model. We analyze the lowest dimension operator involving an unparticle. This operator behaves as a Standard Model gauge singlet and it introduces a new parameter into the Higgs potential which can provide an alternative way to relax the upper limit on the lightest Higgs boson mass. This operator also introduces several unparticle interactions which can induce a neutral Higgsino to decay into a spinor unparticle. It also induces violation of scale invariance around the electroweak scale. It is necessary for the scale of this violation to be larger than the lightest supersymmetric particle mass to maintain the latter as the usual weakly interacting massive particle dark matter candidate. An alternative is to have unparticle state as dark matter candidate. We also comment on some collider implications.
100 - Ernest Ma 2015
In all scalar extensions of the standard model of particle interactions, the one Higgs boson responsible for electroweak symmetry breaking always mixes with other neutral scalars at tree level unless a symmetry prevents it. An unexplored important option is that the mixing may be radiative, and thus guaranteed to be small. Two first such examples are discussed. One is based on the soft breaking of the discrete symmetry $Z_3$. The other starts with the non-Abelian discrete symmetry $A_4$ which is then softly broken to $Z_3$, and results in the emergence of an interesting dark-matter candidate together with a light mediator for the dark matter to have its own long-range interaction.
We perform a thorough analysis of the parameter space of the minimal left-right supersymmetric model in agreement with the LHC data. The model contains left- and right-handed fermionic doublets, two Higgs bidoublets, two Higgs triplet representations, and one singlet, insuring a charge-conserving vacuum. We impose the condition that the model complies with the experimental constraints on supersymmetric particles masses and on the doubly-charged Higgs bosons, and require that the parameter space of the model satisfy the LHC data on neutral Higgs signal strengths at $2sigma$. We choose benchmark scenarios by fixing some basic parameters and scanning over the rest. The LSP in our scenarios is always the lightest neutralino. We find that the signals for $Hto gamma gamma$ and $H to VV^star$ are correlated, while $H to b bar b$ is anti-correlated with all the other decay modes, and also that the contribution from singly-charged scalars dominate that of the doubly-charged scalars in $Hto gamma gamma$ and $H to Zgamma$ loops, contrary to Type-II seesaw models. We also illustrate the range for mass spectrum of the LRSUSY model in light of planned measurements of the branching ratio of $Hto gamma gamma$ to 10% level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا