Do you want to publish a course? Click here

Higgs and Supersymmetry

130   0   0.0 ( 0 )
 Added by Keith Olive
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Global frequentist fits to the CMSSM and NUHM1 using the MasterCode framework predicted m_h simeq 119 GeV in fits incorporating the g_mu-2 constraint and simeq 126 GeV without it. Recent results by ATLAS and CMS could be compatible with a Standard Model-like Higgs boson around m_h simeq 125 GeV. We use the previous MasterCode analysis to calculate the likelihood for a measurement of any nominal Higgs mass within the range of 115 to 130 GeV. Assuming a Higgs mass measurement at m_h simeq 125 GeV, we display updated global likelihood contours in the (m_0, m_{1/2}) and other parameter planes of the CMSSM and NUHM1, and present updated likelihood functions for m_gluino, m_squark, B to mu mu, and the spin-independent dark matter cross section sigma^si. The implications of dropping g_mu-2 from the fits are also discussed. We furthermore comment on a hypothetical measurement of m_h simeq 119 GeV.



rate research

Read More

We study $R^2$-Higgs inflation in a model with two Higgs doublets. The context is the general two Higgs doublet model where the Higgs sector of the Standard Model is extended by an additional Higgs doublet. We first discuss the required inflationary dynamics in this two Higgs doublet model, which includes four scalar fields, in the covariant formalism allowing a nonminimal coupling between the Higgs-squared and the Ricci scalar $R$, as well as the $R^2$ term. We find that the parameter space favored by $R^2$-Higgs inflation requires nearly degenerate $m_mathsf{H}$, $m_A$ and $m_{mathsf{H}^pm}$, where $mathsf{H}$, $A$, and $mathsf{H}^pm$ are the extra CP even, CP odd, and charged Higgs bosons in the general two Higgs doublet model taking renormalization group evolutions of the parameters into account. Discovery of such heavy scalars at the Large Hadron Collider are possible if they are in the sub-TeV mass range. Indirect evidences may also emerge at the LHCb and Belle-II experiments, however, to probe the quasi degenerate mass spectra one would likely require future lepton colliders such as the International Linear Collider and the Future Circular Collider.
Assuming that supersymmetry exists well above the weak scale, we derive the full one-loop matching conditions between the SM and the supersymmetric theory, allowing for the possibility of an intermediate Split-SUSY scale. We also compute two-loop QCD corrections to the matching condition of the Higgs quartic coupling. These results are used to improve the calculation of the Higgs mass in models with high-scale supersymmetry or split supersymmetry, reducing the theoretical uncertainty. We explore the phenomenology of a mini-split scenario with gaugino masses determined by anomaly mediation. Depending on the value of the higgsino mass, the theory predicts a variety of novel possibilities for the dark-matter particle.
Light new physics weakly coupled to the Higgs can induce a strong first-order electroweak phase transition (EWPT). Here, we argue that scenarios in which the EWPT is driven first-order by a light scalar with mass between $sim 10$ GeV - $m_h/2$ and small mixing with the Higgs will be conclusively probed by the high-luminosity LHC and future Higgs factories. Our arguments are based on analytic and numerical studies of the finite-temperature effective potential and provide a well-motivated target for exotic Higgs decay searches at the LHC and future lepton colliders.
No-scale supergravity provides a successful framework for Starobinsky-like inflation models. Two classes of models can be distinguished depending on the identification of the inflaton with the volume modulus, $T$ (C-models), or a matter-like field, $phi$ (WZ-models). When supersymmetry is broken, the inflationary potential may be perturbed, placing restrictions on the form and scale of the supersymmetry breaking sector. We consider both types of inflationary models in the context of high-scale supersymmetry. We further distinguish between models in which the gravitino mass is below and above the inflationary scale. We examine the mass spectra of the inflationary sector. We also consider in detail mechanisms for leptogenesis for each model when a right-handed neutrino sector, used in the seesaw mechanism to generate neutrino masses, is employed. In the case of C-models, reheating occurs via inflaton decay to two Higgs bosons. However, there is a direct decay channel to the lightest right-handed neutrino which leads to non-thermal leptogenesis. In the case of WZ-models, in order to achieve reheating, we associate the matter-like inflaton with one of the right-handed sneutrinos whose decay to the lightest right handed neutrino simultaneously reheats the Universe and generates the baryon asymmetry through leptogenesis.
We propose a new non-thermal mechanism of dark matter production based on vacuum misalignment. A global $X$-charge asymmetry is generated at high temperatures, under which both the will-be Higgs and the dark matter are charged. At lower energies, the vacuum changes alignment and breaks the $U(1)_X$, leading to the emergence of the Higgs and of a fraction of charge asymmetry stored in the stable dark matter relic. This mechanism can be present in a wide variety of models based on vacuum misalignment, and we demonstrate it in a composite Higgs template model, where all the necessary ingredients are naturally present. A light pseudo-scalar $eta$ is always predicted, with interesting implications for cosmology, future supernova observations and exotic $Z to gamma eta$ decays.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا