Do you want to publish a course? Click here

C IV absorption line variability in X-ray bright BALQSOs

431   0   0.0 ( 0 )
 Added by Ravi Joshi
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report kinematic shift and strength variability of C IV broad absorption line (BAL) trough in two high-ionization X-ray bright QSOs SDSS J085551+375752 (at zem ~ 1.936) and SDSS J091127+055054 (at zem ~ 2.793). Both these QSOs have shown combination of profile shift, appearance and disappearance of absorption components belonging to a single BAL trough. The observed average kinematic shift of whole BAL profile resulted in an average deceleration of ~ -0.7 +- 0.1, -2.0 +- 0.1 cm/s^2 over a rest-frame time-span of 3.11 yr and 2.34 yr for SDSS J085551+375752 and SDSS J091127+055054, respectively. To our knowledge, these are the largest kinematic shifts exceeding by factor of about 2.8, 7.8 than the highest deceleration reported in the literature; making both of them as a potential candidate to investigate outflows using multi-wavelength monitoring for their line and continuum variability. We explore various possible mechanisms to understand the observed profile variations. Outflow models involving many small self-shielded clouds moving probably in a curved path provides the simplest explanation for the C IV BAL strength and velocity variations along with the X-ray bright nature of these sources.



rate research

Read More

We study a sample of six X-ray selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index alpha=0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, alpha_OX, of the X-ray selected BALQSOs, have a mean value of 1.69 +- 0.05, which is similar to that found for X-ray selected and optically selected non-BAL QSOs of similar ultraviolet luminosity. In contrast, optically-selected BALQSOs typically have much larger alpha_OX and so are characterised as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray spectra are absorbed by a similar degree to that seen in optically-selected BALQSO samples; X-ray absorption appears to be ubiquitous in BALQSOs, but X-ray weakness is not. We argue that BALQSOs sit at one end of a spectrum of X-ray absorption properties in QSOs related to the degree of ultraviolet absorption in C IV 1550.
We investigate the X-ray variability characteristics of hard X-ray selected AGNs (based on Swift/BAT data) in the soft X-ray band using the RXTE/ASM data. The uncertainties involved in the individual dwell measurements of ASM are critically examined and a method is developed to combine a large number of dwells with appropriate error propagation to derive long duration flux measurements (greater than 10 days). We also provide a general prescription to estimate the errors in variability derived from rms values from unequally spaced data. Though the derived variability for individual sources are not of very high significance, we find that, in general, the soft X-ray variability is higher than those in hard X-rays and the variability strengths decrease with energy for the diverse classes of AGN. We also examine the strength of variability as a function of the break time scale in the power density spectrum (derived from the estimated mass and bolometric luminosity of the sources) and find that the data are consistent with the idea of higher variability at time scales longer than the break time scale.
We report the discovery of an extreme X-ray flux rise (by a factor of > 20) of the weak-line quasar SDSS J153913.47+395423.4 (hereafter SDSS J1539+3954) at z = 1.935. SDSS J1539+3954 is the most-luminous object among radio-quiet type 1 AGNs where such dramatic X-ray variability has been observed. Before the X-ray flux rise, SDSS J1539+3954 appeared X-ray weak compared with the expectation from its UV flux; after the rise, the ratio of its X-ray flux and UV flux is consistent with the majority of the AGN population. We also present a contemporaneous HET spectrum of SDSS J1539+3954, which demonstrates that its UV continuum level remains generally unchanged despite the dramatic increase in the X-ray flux, and its C iv emission line remains weak. The dramatic change only observed in the X-ray flux is consistent with a shielding model, where a thick inner accretion disk can block our line of sight to the central X-ray source. This thick inner accretion disk can also block the nuclear ionizing photons from reaching the high-ionization broad emission-line region, so that weak high-ionization emission lines are observed. Under this scenario, the extreme X-ray variability event may be caused by slight variations in the thickness of the disk. This event might also be explained by gravitational light-bending effects in a reflection model.
We report the discovery of rapid variations of a high-velocity CIV broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4sigma) variability in the equivalent width of the broad (~4000 km/s wide) CIV trough on rest-frame timescales as short as 1.20 days (~29 hours), the shortest broad absorption line variability timescale yet reported. The equivalent width varied by ~10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n_e > 3.9 x 10^5 cm^-3. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.
CRTS J084133.15+200525.8 is an optically bright quasar at z=2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V~17.3 between 2002 and 2008. Then, over the following five years, the source slowly brightened by approximately one magnitude, to V~16.2. Only ~1 in 10,000 quasars show such extreme variability, as quantified by the extreme parameters derived for this quasar assuming a damped random walk model. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line (FeLoBAL) quasar with extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. We report the first definitive redshift for this source, based on the detection of broad H-alpha in a Keck/MOSFIRE spectrum. Absorption systems separated by several 1000 km/s in velocity show coordinated weakening in the depths of their troughs as the continuum flux increases. We interpret the broad absorption line variability to be due to changes in photoionization, rather than due to motion of material along our line of sight. This source highlights one sort of rare transition object that astronomy will now be finding through dedicated time-domain surveys.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا