Do you want to publish a course? Click here

Extreme Variability in a Broad Absorption Line Quasar

133   0   0.0 ( 0 )
 Added by Daniel Stern
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

CRTS J084133.15+200525.8 is an optically bright quasar at z=2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V~17.3 between 2002 and 2008. Then, over the following five years, the source slowly brightened by approximately one magnitude, to V~16.2. Only ~1 in 10,000 quasars show such extreme variability, as quantified by the extreme parameters derived for this quasar assuming a damped random walk model. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line (FeLoBAL) quasar with extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. We report the first definitive redshift for this source, based on the detection of broad H-alpha in a Keck/MOSFIRE spectrum. Absorption systems separated by several 1000 km/s in velocity show coordinated weakening in the depths of their troughs as the continuum flux increases. We interpret the broad absorption line variability to be due to changes in photoionization, rather than due to motion of material along our line of sight. This source highlights one sort of rare transition object that astronomy will now be finding through dedicated time-domain surveys.



rate research

Read More

Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. Studying the variability in these BALs can help us understand the structure, evolution, and basic physical properties of these outflows. We are conducting a BAL monitoring program, which so far includes 163 spectra of 24 luminous quasars, covering time-scales from sim 1 week to 8 years in the quasar rest-frame. We investigate changes in both the CIV {lambda}1550 and SiIV {lambda}1400 BALs, and we report here on some of the results from this program.
91 - Patrick B. Hall 2006
I report the discovery of blueshifted broad absorption line (BAL) troughs in at least six transitions of the Balmer series of hydrogen (Hbeta to H9) and in CaII, MgII and excited FeII in the quasar SDSS J125942.80+121312.6. This is only the fourth active galactic nucleus known to exhibit Balmer absorption, all four in conjunction with low-ionization BAL systems containing excited Fe II. The substantial population in the n=2 shell of H I in this quasars absorber likely arises from Ly-alpha trapping. In an absorber sufficiently optically thick to show Balmer absorption, soft X-rays from the quasar penetrate to large tau_Lyalpha and ionize H I. Recombination then creates Ly-alpha photons that increase the n=2 population by a factor tau_Lyalpha since they require about tau_Lyalpha scatterings to diffuse out of the absorber. Observing Ly-alpha trapping in a quasar absorber requires a large but Compton-thin column of gas along our line of sight which includes substantial H I but not too much dust. Presumably the rarity of Balmer-line BAL troughs reflects the rarity of such conditions in quasar absorbers.
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that might exist in all quasars and could play a major role in feedback to galaxy evolution. The viability of BAL outflows as a feedback mechanism depends on their kinetic energies, as derived from the outflow velocities, column densities, and distances from the central quasar. We estimate these quantities for the quasar, Q1413+1143 (redshift $z_e = 2.56$), aided by the first detection of PV $lambdalambda$1118,1128 BAL variability in a quasar. In particular, PV absorption at velocities where the CIV trough does not reach zero intensity implies that the CIV BAL is saturated and the absorber only partially covers the background continuum source (with characteristic size <0.01 pc). With the assumption of solar abundances, we estimate that the total column density in the BAL outflow is log N_H > 22.3 (cm^-2). Variability in the PV and saturated CIV BALs strongly disfavors changes in the ionization as the cause of the BAL variability, but supports models with high-column density BAL clouds moving across our lines of sight. The observed variability time of 1.6 yr in the quasar rest frame indicates crossing speeds >750 km/s and a radial distance from the central black hole of <3.5 pc, if the crossing speeds are Keplerian. The total outflow mass is ~4100 M_solar, the kinetic energy ~4x10^54 erg, and the ratio of the outflow kinetic energy luminosity to the quasar bolometric luminosity is ~0.02 (at the minimum column density and maximum distance), which might be sufficient for important feedback to the quasars host galaxy.
We have observed a dramatic change in the spectrum of the formerly heavily absorbed `overlapping-trough iron low-ionization broad absorption line (FeLoBAL) quasar FBQS J1408+3054. Over a time span of between 0.6 to 5 rest-frame years, the Mg II trough outflowing at 12,000 km/s decreased in equivalent width by a factor of two and the Fe II troughs at the same velocity disappeared. The most likely explanation for the variability is that a structure in the BAL outflow moved out of our line of sight to the ultraviolet continuum emitting region of the quasars accretion disk. Given the size of that region, this structure must have a transverse velocity of between 2600 km/s and 22,000 km/s. In the context of a simple outflow model, we show that this BAL structure is located between approximately 5800 and 46,000 Schwarzschild radii from the black hole. That distance corresponds to 1.7 to 14 pc, 11 to 88 times farther from the black hole than the H-beta broad-line region. The high velocities and the parsec-scale distance for at least this one FeLoBAL outflow mean that not all FeLoBAL outflows can be associated with galaxy-scale outflows in ultraluminous infrared galaxies transitioning to unobscured quasars. The change of FBQS J1408+3054 from an FeLoBAL to a LoBAL quasar also means that if (some) FeLoBAL quasars have multiwavelength properties which distinguish them from HiBAL quasars, then some LoBAL quasars will share those properties. Finally, we extend previous work on how multiple-epoch spectroscopy of BAL and non-BAL quasars can be used to constrain the average lifetime of BAL episodes (currently >60 rest-frame years at 90% confidence).
We present a two-epoch Sloan Digital Sky Survey and Gemini/GMOS+William Herschel Telescope/ISIS variability study of 50 broad absorption line quasars of redshift range 1.9 < z < 4.2, containing 38 Si IV and 59 C IV BALs and spanning rest-frame time intervals of approximately 10 months to 3.7 years. We find that 35/50 quasars exhibit one or more variable BALs, with 58% of Si IV and 46% of C IV BALs showing variability across the entire sample. On average, Si IV BALs show larger fractional change in BAL pseudo equivalent width than C IV BALs, as referenced to an unabsorbed continuum+emission-line spectrum constructed using non-negative matrix factorisation. No correlation is found between BAL variability and quasar luminosity, suggesting that ionizing continuum changes do not play a significant role in BAL variability (assuming the gas is in photoionization equilibrium with the ionizing continuum). A subset of 14 quasars have one variable BAL from each of Si IV and C IV with significant overlap in velocity space and for which variations are in the same sense (strengthening or weakening) and which appear to be correlated (98% confidence). We find examples of both appearing and disappearing BALs in weaker/shallower lines with disappearance rates of 2.3% for C IV and 5.3% for Si IV, suggesting average lifetimes of 142 and 43 years respectively. We identify 5 objects in which the BAL is coincident with the broad emission-line, but appears to cover only the continuum source. Assuming a clumpy inhomogeneous absorber model and a typical size for the continuum source, we infer a maximum cloud radius of 10^13 to 10^14 cm, assuming Eddington limited accretion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا