Do you want to publish a course? Click here

X-ray selected BALQSOs

68   0   0.0 ( 0 )
 Added by Mathew James Page
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a sample of six X-ray selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index alpha=0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, alpha_OX, of the X-ray selected BALQSOs, have a mean value of 1.69 +- 0.05, which is similar to that found for X-ray selected and optically selected non-BAL QSOs of similar ultraviolet luminosity. In contrast, optically-selected BALQSOs typically have much larger alpha_OX and so are characterised as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray spectra are absorbed by a similar degree to that seen in optically-selected BALQSO samples; X-ray absorption appears to be ubiquitous in BALQSOs, but X-ray weakness is not. We argue that BALQSOs sit at one end of a spectrum of X-ray absorption properties in QSOs related to the degree of ultraviolet absorption in C IV 1550.



rate research

Read More

We report kinematic shift and strength variability of C IV broad absorption line (BAL) trough in two high-ionization X-ray bright QSOs SDSS J085551+375752 (at zem ~ 1.936) and SDSS J091127+055054 (at zem ~ 2.793). Both these QSOs have shown combination of profile shift, appearance and disappearance of absorption components belonging to a single BAL trough. The observed average kinematic shift of whole BAL profile resulted in an average deceleration of ~ -0.7 +- 0.1, -2.0 +- 0.1 cm/s^2 over a rest-frame time-span of 3.11 yr and 2.34 yr for SDSS J085551+375752 and SDSS J091127+055054, respectively. To our knowledge, these are the largest kinematic shifts exceeding by factor of about 2.8, 7.8 than the highest deceleration reported in the literature; making both of them as a potential candidate to investigate outflows using multi-wavelength monitoring for their line and continuum variability. We explore various possible mechanisms to understand the observed profile variations. Outflow models involving many small self-shielded clouds moving probably in a curved path provides the simplest explanation for the C IV BAL strength and velocity variations along with the X-ray bright nature of these sources.
Several works have studied the relation between X-ray, UV, and wind properties in broad absorption line quasars (BALQSOs), generally concluding that the formation of strong winds is tightly connected with the suppression of the ionizing EUV/X-ray emission. The Eddington ratio ($lambda_{Edd}$), which measures the accretion rate, is also known to be related with outflow and emission-line properties in the general quasar population. Moreover, models describing quasar accretion depend on $lambda_{Edd}$, which can thus possibly affect the relative production of accelerating UV and ionizing EUV/X-ray radiation. In this work, for the first time, we investigated whether BALQSO X-ray properties are related with the Eddington ratio. We selected a sample of 30 BALQSOs with accurate measurements of black-hole mass and BAL properties from the literature, and we complemented it with 4 additional BALQSOs we observed with xmm, to populate the low and high Eddington-ratio regimes. We did not find evidence for a strong relation between $lambda_{Edd}$ and X-ray suppression, which however shows a significant correlation with the strength of the UV absorption features. These findings are confirmed also by considering a sample of mini-BALQSOs collected from the literature.
Using the latest 70 month Swift-BAT catalog we examined hard X-ray selected Seyfert I galaxies which are relatively little known and little studied, and yet potentially promising to test the ionized relativistic reflection model. From this list we chose 13 sources which have been observed by XMM-Newton for less than 20 ks, in order to explore the broad band soft to hard X-ray properties with the analysis of combined XMM-Newton and Swift data. Out of these we found seven sources which exhibit potentially promising features of the relativistic disc reflection, such as a strong soft excess, a large Compton hump and/or a broadened Fe line. Longer observations of four of these sources with the currently operating satellite missions, such as Suzaku, XMM-Newton and NuStar and two others by such future missions as ASTRO-H, will be invaluable, in order to better understand the relativistic disc reflection closest to the central black hole and constrain such important effects of strong gravity as the black hole spin.
202 - Sagnick Mukherjee 2018
We use data from the All Wavelength Extended Groth Strip International Survey to construct stacked X-ray maps of optically bright active galaxies (AGN) and an associated control sample of galaxies at high redshift (z less than 0.6). From our analysis of the surface brightness profiles obtained from these X-ray maps, we find evidence of feedback from the active nuclei. We find that excluding galaxies and AGN, residing in group environments, from our samples enhances the significance of our detection. Our results support the tentative findings of Chatterjee et al. who use X-ray selected AGN for their analysis. We discuss the implications of these results in the context of quantifying AGN feedback and show that the current method can be used to extract X-ray source population in high redshift galaxies.
Merger simulations predict that tidally induced gas inflows can trigger kpc-scale dual active galactic nuclei (dAGN) in heavily obscured environments. Previously with the Very Large Array, we have confirmed four dAGN with redshifts between $0.04 < z < 0.22$ and projected separations between 4.3 and 9.2 kpc in the SDSS Stripe 82 field. Here, we present $Chandra$ X-ray observations that spatially resolve these dAGN and compare their multi-wavelength properties to those of single AGN from the literature. We detect X-ray emission from six of the individual merger components and obtain upper limits for the remaining two. Combined with previous radio and optical observations, we find that our dAGN have properties similar to nearby low-luminosity AGN, and they agree well with the black hole fundamental plane relation. There are three AGN-dominated X-ray sources, whose X-ray hardness-ratio derived column densities show that two are unobscured and one is obscured. The low obscured fraction suggests these dAGN are no more obscured than single AGN, in contrast to the predictions from simulations. These three sources show an apparent X-ray deficit compared to their mid-infrared continuum and optical [OIII] line luminosities, suggesting higher levels of obscuration, in tension with the hardness-ratio derived column densities. Enhanced mid-infrared and [OIII] luminosities from star formation may explain this deficit. There is ambiguity in the level of obscuration for the remaining five components since their hardness ratios may be affected by non-nuclear X-ray emissions, or are undetected altogether. They require further observations to be fully characterized.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا