No Arabic abstract
We use simulated SN Ia samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and the bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: 120 low-redshift (z < 0.1) SNe Ia, 255 SDSS SNe Ia (z < 0.4), and 290 SNLS SNe Ia (z <= 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (winput - wrecovered) ranging from -0.005 +/- 0.012 to -0.024 +/- 0.010. These biases are indistinguishable from each other within uncertainty; the average bias on w is -0.014 +/- 0.007.
We present a comprehensive statistical analysis of the properties of Type Ia SN light curves in the near infrared using recent data from PAIRITEL and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction and intrinsic variations, for coherent statistical inference. SN Ia light curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR dataset. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient MCMC algorithm exploiting the conditional structure using Gibbs sampling. We apply this framework to the JHK_s SN Ia light curve data. A new light curve model captures the observed J-band light curve shape variations. The intrinsic variances in peak absolute magnitudes are: sigma(M_J) = 0.17 +/- 0.03, sigma(M_H) = 0.11 +/- 0.03, and sigma(M_Ks) = 0.19 +/- 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SN at cz > 2000 km/s is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light curve inference tests the sensitivity of the model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.
We probe the systematic uncertainties from 113 Type Ia supernovae (SNIa) in the Pan-STARRS1 (PS1) sample along with 197 SN Ia from a combination of low-redshift surveys. The companion paper by Rest et al. (2013) describes the photometric measurements and cosmological inferences from the PS1 sample. The largest systematic uncertainty stems from the photometric calibration of the PS1 and low-z samples. We increase the sample of observed Calspec standards from 7 to 10 used to define the PS1 calibration system. The PS1 and SDSS-II calibration systems are compared and discrepancies up to ~0.02 mag are recovered. We find uncertainties in the proper way to treat intrinsic colors and reddening produce differences in the recovered value of w up to 3%. We estimate masses of host galaxies of PS1 supernovae and detect an insignificant difference in distance residuals of the full sample of 0.037pm0.031 mag for host galaxies with high and low masses. Assuming flatness in our analysis of only SNe measurements, we find $w = {-1.120^{+0.360}_{-0.206}textrm{(Stat)} ^{+0.269}_{-0.291}textrm{(Sys)}}$. With additional constraints from BAO, CMB(Planck) and H0 measurements, we find $w = -1.166^{+0.072}_{-0.069}$ and $Omega_M=0.280^{+0.013}_{-0.012}$ (statistical and systematic errors added in quadrature). Significance of the inconsistency with $w=-1$ depends on whether we use Planck or WMAP measurements of the CMB: $w_{textrm{BAO+H0+SN+WMAP}}=-1.124^{+0.083}_{-0.065}$.
Upcoming high-cadence transient survey programmes will produce a wealth of observational data for Type Ia supernovae. These data sets will contain numerous events detected very early in their evolution, shortly after explosion. Here, we present synthetic light curves, calculated with the radiation hydrodynamical approach Stella for a number of different explosion models, specifically focusing on these first few days after explosion. We show that overall the early light curve evolution is similar for most of the investigated models. Characteristic imprints are induced by radioactive material located close to the surface. However, these are very similar to the signatures expected from ejecta-CSM or ejecta-companion interaction. Apart from the pure deflagration explosion models, none of our synthetic light curves exhibit the commonly assumed power-law rise. We demonstrate that this can lead to substantial errors in the determination of the time of explosion. In summary, we illustrate with our calculations that even with very early data an identification of specific explosion scenarios is challenging, if only photometric observations are available.
We analyze the rise and fall times of type Ia supernova (SN Ia) light curves discovered by the SDSS-II Supernova Survey. From a set of 391 light curves k-corrected to the rest frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that a single stretch correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well-observed in both rise and fall portions of the light curves and develop a 2-stretch fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 +/- 0.17 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. We find that slow declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single-peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, tr-tf <= 2 days and tr-tf>2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble residuals in our sample.
We present late-time optical $R$-band imaging data from the Palomar Transient Factory (PTF) for the nearby type Ia supernova SN 2011fe. The stacked PTF light curve provides densely sampled coverage down to $Rsimeq22$ mag over 200 to 620 days past explosion. Combining with literature data, we estimate the pseudo-bolometric light curve for this event from 200 to 1600 days after explosion, and constrain the likely near-infrared contribution. This light curve shows a smooth decline consistent with radioactive decay, except over ~450 to ~600 days where the light curve appears to decrease faster than expected based on the radioactive isotopes presumed to be present, before flattening at around 600 days. We model the 200-1600d pseudo-bolometric light curve with the luminosity generated by the radioactive decay chains of $^{56}$Ni, $^{57}$Ni and $^{55}$Co, and find it is not consistent with models that have full positron trapping and no infrared catastrophe (IRC); some additional energy escape other than optical/near-IR photons is required. However, the light curve is consistent with models that allow for positron escape (reaching 75% by day 500) and/or an IRC (with 85% of the flux emerging in non-optical wavelengths by day 600). The presence of the $^{57}$Ni decay chain is robustly detected, but the $^{55}$Co decay chain is not formally required, with an upper mass limit estimated at 0.014 M$_{odot}$. The measurement of the $^{57}$Ni/$^{56}$Ni mass ratio is subject to significant systematic uncertainties, but all of our fits require a high ratio >0.031 (>1.3 in solar abundances).