No Arabic abstract
We analyze the rise and fall times of type Ia supernova (SN Ia) light curves discovered by the SDSS-II Supernova Survey. From a set of 391 light curves k-corrected to the rest frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that a single stretch correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well-observed in both rise and fall portions of the light curves and develop a 2-stretch fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 +/- 0.17 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. We find that slow declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single-peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, tr-tf <= 2 days and tr-tf>2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble residuals in our sample.
We present a sample of normal type Ia supernovae from the Nearby Supernova Factory dataset with spectrophotometry at sufficiently late phases to estimate the ejected mass using the bolometric light curve. We measure $^{56}$Ni masses from the peak bolometric luminosity, then compare the luminosity in the $^{56}$Co-decay tail to the expected rate of radioactive energy re- lease from ejecta of a given mass. We infer the ejected mass in a Bayesian context using a semi-analytic model of the ejecta, incorporating constraints from contemporary numerical models as priors on the density structure and distribution of $^{56}$Ni throughout the ejecta. We find a strong correlation between ejected mass and light curve decline rate, and consequently $^{56}$Ni mass, with ejected masses in our data ranging from 0.9-1.4 $M_odot$. Most fast-declining (SALT2 $x_1 < -1$) normal SNe Ia have significantly sub-Chandrasekhar ejected masses in our fiducial analysis.
CCD BVRI photometry is presented for type Ia supernova 2008gy. The light curves match the template curves for fast-declining SN Ia, but the colors appear redder than average, and the SN may also be slightly subluminous. SN 2008gy is found to be located far outside the boundaries of three nearest galaxies, each of them has nearly equal probability to be the host galaxy.
We present an analysis of the host galaxy dependencies of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We rediscover, to high significance, the strong correlation between host galaxy typeand the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ias favor star-forming galaxies. We also find evidence (at between 2 to 3 sigma) that SNe Ia are ~0.1 magnitudes brighter in passive host galaxies, than in star-forming hosts, after the SN Ia light curves have been standardized using the light curve shape and color variations: This difference in brightness is present in both the SALT2 and MCLS2k2 light curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R_V ~1, while SNe Ia in star-forming hosts require R_V ~2. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of >4 sigma) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.
Using data from the Sloan Digital Sky Supernova Survey-II, we measure the rate of Type Ia Supernovae (SNe Ia) as a function of galaxy properties at intermediate redshift. A sample of 342 SNe Ia with 0.05<z<0.25 is constructed. Using broad-band photometry we use the PEGASE spectral energy distributions (SEDs) to estimate host galaxy stellar masses and recent star-formation rates. We find that the rate of SNe Ia per unit stellar mass is significantly higher (by a factor of ~30) in highly star-forming galaxies compared to passive galaxies. When parameterizing the SN Ia rate (SNR_Ia) based on host galaxy properties, we find that the rate of SNe Ia in passive galaxies is not linearly proportional to the stellar mass, instead a SNR_Ia proportional to M^0.68 is favored. However, such a parameterization does not describe the observed SN Ia rate in star-forming galaxies. The SN Ia rate in star-forming galaxies is well fit by SNR_Ia = 1.05pm0.16x10^{-10} M ^{0.68pm0.01} + 1.01pm0.09x10^{-3} SFR^{1.00pm0.05} (statistical errors only), where M is the host galaxy mass and SFR is the star-formation rate. These results are insensitive to the selection criteria used, redshift limit considered and the inclusion of non-spectroscopically confirmed SNe Ia. We also show there is a dependence between the distribution of the MLCS light-curve decline rate parameter, Delta, and host galaxy type. Passive galaxies host less luminous SNe Ia than seen in moderately and highly star-forming galaxies, although a population of luminous SNe is observed in passive galaxies, contradicting previous assertions that these SNe Ia are only observed in younger stellar systems. The MLCS extinction parameter, A_V, is similar in passive and moderately star-forming galaxies, but we find indications that it is smaller, on average, in highly star-forming galaxies. We confirm these results using the SALT2 light-curve fitter.
We present the cosmological analysis of 752 photometrically-classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our photometric-classification method is based on the SN typing technique of Sako et al. (2011), aided by host galaxy redshifts (0.05<z<0.55). SNANA simulations of our methodology estimate that we have a SN Ia typing efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat LambdaCDM cosmological model, we find that our photometric sample alone gives omega_m=0.24+0.07-0.05 (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on omega_m and omega_lambda, comparable to those derived from the spectroscopically-confirmed three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H0, CMB and LRG data, we obtain w=-0.96+0.10-0.10, omega_m=0.29+0.02-0.02 and omega_k=0.00+0.03-0.02 (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is re-assuring, considering the lower redshift leverage of the SDSS-II SN sample (z<0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically-classified SNe Ia samples in improving cosmological constraints.